Practice Problems: Inclusion-Exclusion for Designing Exponential Time Exact Algorithms

Palash Dey Indian Institute of Technology, Kharagpur

March 27, 2025

Submit the solutions of the questions marked (*) in PDF format generated using Latex by April 4, 2025.

- (*) In the Steiner Tree problem, we are given an undirected graph G, a set K ⊆ V[G] of terminals. The goal is to find a tree T with the minimum number of edges that includes every vertex in K. Design an inclusion-exclusion based algorithm for the Steiner Tree problem that runs in time O* (2^{|K|}) and polynomial space.
- 2. The domatic number of a graph \mathcal{G} is the minimum integer k such that $\mathcal{V}[\mathcal{G}]$ can be partitioned into k sets $\mathcal{V}_1, \ldots, \mathcal{V}_k$ such that each \mathcal{V}_i is a dominating set of \mathcal{G} . Design an inclusion-exclusion based algorithm for computing the domatic number of any graph in $\mathcal{O}^*(2^n)$ time and polynomial space, where n is the number of vertices of \mathcal{G} .