Practice Problems: Dynamic Programming for Designing Exponential Time Exact Algorithms

Palash Dey Indian Institute of Technology, Kharagpur

March 20, 2025

Submit the solutions of the questions marked (*) in PDF format generated using Latex by March 28, 2025.

- A set of arcs 𝔅 in a directed graph 𝔅 = (𝔅,𝔅) is called a directed feedback arc set of 𝔅 if 𝔅[𝔅,𝔅,𝔅,𝔅,𝔅] is acyclic. Show that we can compute a minimum cardinality directed arc set of any directed graph in 𝔅*(2ⁿ) time, where n is the number of vertices of 𝔅.
- 2. (*) The cut-width of a vertex ordering π of a graph $\mathfrak{G}=(\mathfrak{V},\mathfrak{E})$ is

 $\max_{\nu \in \mathcal{V}} \left| \{ \{w, x\} \in \mathcal{E} : \pi(w) \leqslant \pi(\nu) < \pi(x) \} \right|.$

The cut-width of a graph is the minimum cut-width taken over all orderings of its vertices. Show that we can compute the cut-width of a graph in time $O^*(2^n)$ time, where n is the number of vertices of \mathcal{G} .

- 3. The domatic number of a graph G is the minimum integer k such that V[G] can be partitioned into k sets V₁,..., V_k such that each V_i is a dominating set of G. Show how we can compute the domatic number of any graph in O^{*}(3ⁿ) time, where n is the number of vertices of G.
- 4. In the EXACT SAT problem, we are given a CNF formula. The task is to check if there exists an assignment of its variables so that every clause has exactly one literal set to TRUE. Show that there is a $O^*(2^m)$ time algorithm for EXACT SAT, where m is the number of clauses in the formula.