Practice Problems: Edmond's Blossom Algorithm, Matroid

Palash Dey Indian Institute of Technology, Kharagpur

January 22, 2025

Submit the solutions of the questions marked (*) in PDF format generated using Latex by January 31, 2025.

1 Edmond's Blossom Algorithm

(*) Gallai-Edmond Decomposition: The vertex set V of every graph G = (V, E) can be partitioned into three sets, A, B, and D. The set D consists of all vertices which are left unmatched in at least one maximum cardinality matching. They are called inessential vertices. The other vertices, i.e. the vertices in V \ D are called essential vertices since they are matched in every maximum matching of G. The set A consists of all essential vertices which are neighbor of at least one vertex in D. The remaining set of vertices is called B. Design an algorithm to construct the Gallai-Edmond decomposition of any given graph. (Hint: modify Edmond's blossom algorithm)

2 Matroids

Let $\mathcal{M} = (S, \mathcal{I})$ be any matroid.

- 2. Let $B \subset S$ be any subset of S and J a basis of B. We define another matroid $\mathcal{M}' = (S', \mathcal{I}')$ where $S' = S \setminus B$ and $\mathcal{I}' = \{J' \subseteq S' : J' \cup J \in \mathcal{I}\}$. Prove that \mathcal{M}' is a matroid that does not depend of J and the rank of any $A \subseteq S'$ in \mathcal{M}' is the rank of $A \cup B$ in \mathcal{M} minus the rank of B in \mathcal{M} .
- 3. Let $J \in \mathcal{J}$ and $e \in S$ be any. Then $J \cup \{e\}$ contains at most one circuit.
- 4. A *branching* of a directed graph is a forest (of the underlying undirected graph) in which each edge has in-degree at most one. Suppose the edges of *G* are weighted. We want to compute a maximum weight branching of *G*. Model this problem as a weighted matroid intersection problem.
- 5. Let \mathcal{G} be a bipartite graph with $(\mathcal{L}, \mathcal{R})$ be a bipartition of the vertices. A transversal matroid \mathcal{M} is defined on the set \mathcal{L} where a subset $X \subseteq \mathcal{L}$ is an independent set if and only if X can be perfectly matched to a subset of \mathcal{R} . Show that the independence system defined above is a matroid.
- 6. Show that every uniform matroid is a transversal matroid.
- 7. (\star) Show that every matching matroid is a transversal matroid.
- 8. Let M = (S, J) be any matroid. Define the dual $M^* = (S, J^*)$ of M as follows. The ground set of M^* is the ground set of M. A subset A of S is an independent set of M^* if and only if $S \setminus A$ contains a basis of M. Show that M^* is a matroid.
- 9. Let (X_1, \ldots, X_k) be a partition of a set S and $d_i \ge 0$ for every $i \in [k]$. We say a set $A \subseteq S$ is independent if $|A \cap X_i| \le d_i$ for every $i \in [k]$. Prove that this independence system is a matroid.

- 10. (*) Consider the following orientation problem. Given an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and integers $d_{\nu} \ge 0$ for every $\nu \in \mathcal{V}$, compute if it is possible to orient the edges of \mathcal{G} such that the out-degree of every vertex $\nu \in \mathcal{V}$ is at most d_{ν} in the resulting directed graph. Design a polynomial-time algorithm for this problem.
- 11. Suppose we are given an undirected graph \mathcal{G} whose every edge has a (not necessarily distinct) color. Consider the problem of computing if the graph has a spanning tree whose all edges have different colors. Design a polynomial-time algorithm for this problem by reducing it to the matroid intersection problem.