Practice Problems on the Probabilistic Method

- 1. A dominating set of an undirected graph G=(V,E) is a set $U\subseteq V$ such that every vertex $v\in V\setminus U$ has at least one neighbour in U. Suppose that G=(V,E) is a graph with |V|=n and minimum degree d>1. Then show that G has a dominating set of size at most $n\left(\frac{1+\ln(d+1)}{d+1}\right)$.
- 2. We can generalize the problem of finding a large cut to finding a large k-cut. A k-cut is a partition of the vertices into k disjoint sets, and the value of a cut is the weight of all edges crossing from one of the k sets to another. In class, we considered 2-cuts when all edges had the same weight 1, showing via the probabilistic method that any graph G with m edges has a cut with value at least m/2. Generalize this argument to show that any graph G with m edges has a k-cut with value at least (k-1)m/k.
- 3. Use the Lovász Local Lemma to show that, if

$$k \binom{k}{2} \binom{n}{k-2} 2^{1-\binom{k}{2}} \le 1$$

then it is possible to color the edges of K_n with two colors so that it has no monochromatic K_k subgraph. (Here, K_ℓ denotes complete graph on ℓ vertices.)

- 4. Prove that any graph has a bipartite subgraph containing at least half the total number of edges.
- 5. A family of subsets \mathcal{F} of $\{1, 2, ..., n\}$ is called an *anti-chain* if there is no pair of sets A and B in \mathcal{F} satisfying $A \subset B$.
 - (a) Give an example of \mathcal{F} where $|\mathcal{F}| = \binom{n}{\lfloor n/2 \rfloor}$.
 - (b) Let f_k be the number of sets in \mathcal{F} with size k. Show that

$$\sum_{k=0}^{n} \frac{f_k}{\binom{n}{k}} \ge 1.$$

- (c) Argue that $|\mathcal{F}| \leq \binom{n}{\lfloor n/2 \rfloor}$ for any anti-chain \mathcal{F} .
- 6. Let G = (V, E) be a directed graph with minimum outdegree d and maximum indegree D. Prove (using Lovász Local Lemma) that if $k \leq \frac{d}{1 + \ln(1 + dD)}$, then G contains a directed cycle of length divisible by k.