Practice Problems on Basic Probability, PIT

Palash Dey Indian Institute of Technology, Kharagpur

1. Let $X_i, i \in [n]$ be n random variables each with finite support. Then prove the following.

$$var\left(\sum_{i=1}^{n} \mathfrak{X}_{i}\right) = \sum_{i=1}^{n} var\left(\mathfrak{X}_{i}\right) + 2 \sum_{1 \leqslant i < j \leqslant n} cov(\mathfrak{X}_{i}, \mathfrak{X}_{j})$$

where for any two random variables \mathfrak{X} and \mathfrak{Y} , we define $cov(\mathfrak{X}, \mathfrak{Y}) = \mathbb{E}[\mathfrak{X}\mathfrak{Y}] - \mathbb{E}[\mathfrak{X}]\mathbb{E}[\mathfrak{Y}]$.

2. Let \mathcal{X} and \mathcal{Y} be two independent random variables. Then prove that $\mathbb{E}[\mathcal{X}\mathcal{Y}] = \mathbb{E}[\mathcal{X}]\mathbb{E}[\mathcal{Y}]$. From this conclude that, for n pairwise random variables $\mathcal{X}_i, i \in [n]$, we have the following.

$$var\left(\sum_{i=1}^{n} \mathcal{X}_{i}\right) = \sum_{i=1}^{n} var(\mathcal{X}_{i})$$

3. Compute the running time of the polynomial identity testing algorithm discussed in the class where the input polynomial is over a finite field $\mathbb F$ and its total degree is $d < |\mathbb F|$.