Practice Problems on Color Coding and Concentration Inequalities

Palash Dey Indian Institute of Technology, Kharagpur

- 1. Design a randomized algorithm for computing if a given directed graph contains a cycle of length at least k. Your algorithm should run in time $O(c^k \operatorname{poly}(n))$ where c is some constant.
- 2. In the Triangle Packing problem, we are given an undirected graph G and a positive integer k, and the objective is to test whether G has k-vertex disjoint triangles. Using color coding show that the problem admits an algorithm with running time $2^{O(k)}n^{O(1)}$.
- 3. Prove that the condition in the Markov's inequality that the random variable under consideration must be non-negative is necessary.
- 4. Let A_i , $i \in [n]$ be n objects each having two attributes A_i^x and A_i^y . The attribute y is 0 for every A_i . Suppose we have a deterministic quick sort algorithm that can sort A_i , $i \in [n]$ on the attribute x or on the attribute y. Can you use this deterministic quick sort algorithm to design a randomized algorithm to sort A_i , $i \in [n]$ on the attribute x which makes an expected $O(n \log n)$ comparisons? Please prove that your algorithm indeed makes $O(n \log n)$ comparisons on expectation.
- 5. Let \mathcal{X}_i , $i \in [n]$ be n pairwise independent random variables each taking values in $\{0,1\}$ with expectation μ and $\mathcal{S} = \sum_{i=1}^n \mathcal{X}_i$. Then for any positive real number δ we have the following.

$$\Pr\left[\$\leqslant (1-\delta)\mu\right]\leqslant \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}$$

- 6. Show that the expected number of balls one needs to through randomly into m bins to have every bin at least one ball is $O(m \log m)$.
- 7. Give an example of a random variable whose expectation exists but variance does not exist.
- 8. Prove the weak law of large numbers using Chebyshev inequality. The weak law of large number states that, for random variables X_i , $i \in \mathbb{N}$ which are distributes independently and identically with mean μ and variance σ^2 , we have the following for any constant $\epsilon > 0$

$$\lim_{n \to \infty} \text{Pr}\left[\left| \frac{X_1 + X_2 + \dots + X_n}{n} - \mu \right| > \epsilon \right] = 0$$

- 9. Let \mathcal{X}_i , $i \in [n]$ be n independent random variables each taking values in $\{0,2\}$ with expectation μ and $\mathcal{S} = \sum_{i=1}^n \mathcal{X}_i$. Use standard Chernoff bound proved in class to upper bound the probability that \mathcal{S} takes value more than $(1+\delta)\mu$.
- 10. Let \mathcal{X} be a random variable with expectation μ and variance σ^2 . Then for any $t \in \mathbb{R}_{\geqslant 0}$, prove the following.

$$Pr\left[\mathfrak{X}-\mu\geqslant t\sigma\right]\leqslant\frac{1}{1+t^2}\text{ and }Pr\left[|\mathfrak{X}-\mu|\geqslant t\sigma\right]\leqslant\frac{2}{1+t^2}$$

11. Let \mathcal{X} be a non-negative integer valued random variable with positive expectation. Then prove the following.

$$\text{Pr}\left[\mathfrak{X}=0\right]\leqslant\frac{\mathbb{E}[\mathfrak{X}^2]-\mathbb{E}[\mathfrak{X}]^2}{\mathbb{E}[\mathfrak{X}]^2}\text{ and }\frac{\mathbb{E}[\mathfrak{X}]^2}{\mathbb{E}[\mathfrak{X}^2]}\leqslant\text{Pr}[\mathfrak{X}\neq0]\leqslant\mathbb{E}[\mathfrak{X}]$$