INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Department of Computer Science and Engineering

CS60029 Randomized Algorithm Design	1	Mid-Semester Examination, Autumn 25
23 September 2025	60 Marks	2:00 PM to 4:00 PM

Answer all questions.

- 1. (a) (7 points) Consider the distribution of the weight of bread produced in a factory. The weight of every bread is at least 1 Kg. The mean and median of the weight distribution are respectively 1.0001 Kg and 1.00005 Kg. Show that the probability that the weight of a bread picked uniformly randomly from the set of breads produced in the factory is less than 1.0004 Kg, is at least $\frac{3}{4}$.
 - (b) (8 points) Let X be the random variable denoting the maximum load of any bin in the balls and bin experiment with n balls and n bins. Show that $\mathbb{E}[X] \geqslant \frac{\ln n}{3 \ln \ln n}$.
- 2. (a) (3 points) Define the multi-commodity flow problem.
 - (b) (12 points) Design a randomized rounding based polynomial-time $O\left(\frac{\ln n}{\ln \ln n}\right)$ factor approximation algorithm for the problem. Prove its approximation guarantee.
- 3. Consider the following card shuffling process: insert the top card at a position chosen uniformly at random from 1 to n.
 - (a) (5 points) Model the shuffling process as a Markov chain.
 - (b) (10 points) Show that the unique stationary distribution is the uniform distribution and that $t_{mix}(\epsilon) \leqslant n \ln\left(\frac{n}{\epsilon}\right)$.
- 4. Let G = (V, E) be any graph with |E| > 0. Consider the following Markov chain defined on the state space consisting of all independent sets of G. ($S \subseteq V$ is an independent set if there are no edges in the subgraph induced by S.) Let X_t denote the state at time t. Pick a vertex

 $v \in V$ uniformly at random. Define

$$X_{t+1} = \left\{ \begin{array}{ll} X_t \setminus \{\nu\} & \text{if } \nu \in X_t \\ \\ X_t \cup \{\nu\} & \text{if } \nu \notin X_t \text{ and } X_t \cup \{\nu\} \text{ is an independent set of G} \\ \\ X_t & \text{otherwise} \end{array} \right.$$

Assume X₀ is an arbitrary independent set of G.

- (a) (6 points) Argue that the above Markov chain is irreducible, aperiodic and its stationary distribution is the uniform distribution over all independent sets of G.
- (b) (9 points) Let $\lambda > 0$ be some constant and I_x denote the independent set of G corresponding to state x. Use the Metropolis algorithm to modify the above chain so that the stationary distribution is given by $\pi_x = \lambda^{|I_x|}/B$ where $B = \sum_x \lambda^{|I_x|}$.