Indian Institute of Technology Kharagpur Department of Computer Science and Engineering

CS60029 Randomised Algorithm Design

Autumn 2025

End-Semester Examination

Marks = 100

22-Nov-2025, 2PM – 5PM

Answer any five questions. State all assumptions you make. Keep your answers concise.

If not mentioned otherwise, assume that n and m are any positive integers at least 2, and p is any prime number at least 2.

- 1. (a) Prove that there is no algorithm with polylogarithmic (in n and m) space complexity that outputs the frequency of any element queried at the end of an m length stream over a universe of size n.
 - (b) Prove or disprove: The hash family $\{h_{a,b}: \mathbb{Z}_{10} \longrightarrow \mathbb{Z}_2$, defined as $h_{a,b}(x) = ax + b \pmod{2}$: $a, b \in \mathbb{Z}_{10}, a \neq 0\}$ is a 2-universal hash family.

8+12 = 20

- 2. Let $\{X_i\}_{i=1}^n$ be a sequence of zero-mean random variables (not necessarily independent), each sub-Gaussian with parameter σ . Prove that
 - (a) $\mathbf{E}[\max_{i \in [n]} X_i] \le \sqrt{2\sigma^2 \log n}$

Hint: The logarithmic function is concave and exponential function is convex.

(b) $\Pr[\max_{i \in [n]} X_i \ge t] \le ne^{-t^2/2\sigma^2}$

20

3. The Monte Carlo method for estimating the value of π discussed in the class assumes that we can draw uniform samples from a 2×2 square in \mathbb{R}^2 , which is an uncountably infinite set. Design an (ϵ, δ) -approximator of π , which needs to draw uniform samples from finite sets only. In particular, it does not need to draw sample from any infinite set.

20

- 4. Use the probabilistic method for the following.
 - (a) Let F be a finite collection of binary strings of finite lengths and assume no member of F is a prefix of another one. Let n_i denote the number of strings of length i in F. Prove that

$$\sum_{i} \frac{n_i}{2^i} \le 1.$$

(b) Let $\vec{v}_1, \ldots, \vec{v}_n \in \mathbb{R}^n$ with $||\vec{v}_i|| = 1$ for all $i \in [n]$ (here, $||\vec{v}||$ denotes the L_2 -norm of \vec{v}). Show that there exist $e_1, \ldots, e_n \in \{-1, 1\}$ such that

$$||e_1\vec{v}_1 + \dots + e_n\vec{v}_n|| \ge \sqrt{n}.$$

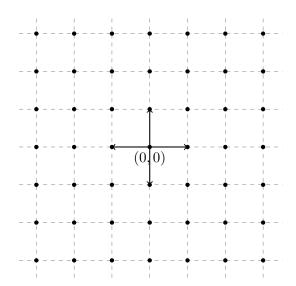
10+10=20

5. Show that it is possible to colour the edges of K_n (complete graph on n vertices) so that it has no monochromatic K_k -subgraph if

$$4\binom{k}{2}\binom{n}{k-2}2^{1-\binom{k}{2}} \le 1.$$

20

6. Let S_n be a simple symmetric random walk on the square lattice \mathbb{Z}^2 with $S_0 = (0,0)$. The walker starts from the origin and at each step, independently moves one unit to East, North, West, South directions with equal probability (1/4). Let D_n be the walker's Euclidean distance from the origin at time n (i.e., after n moves).



Which one of the following sequences is a martingale? Justify your answer.

- (a) $\{D_n\}_{n\geq 0}$
- (b) $\{D_n^2 n\}_{n \ge 0}$
- $(c) \{D_n n\}_{n \ge 0}$

20