Indian Institute of Technology Kharagpur Dept. Computer Science and Engineering

Subject No.: CS31005 Subject Name: Algorithms II

Total marks: 60 Duration: 2 hours

Mid Semester Examination

Answer all questions.

- 1. (a) 4 points Given a network G, a source s and a sink t, as well as a positive threshold integer λ , design an efficient algorithm to find an s-t path where every edge has capacity at least λ .
 - (b) 3 points Continuing from the previous part, give an efficient algorithm to find an s-t path where the minimum capacity appearing on an edge of the path is maximized.
 - (c) 3 points Let G be a network with source s and sink t. Use a max flow algorithm to find a minimum-cardinality set of edges the deletion of which disconnects s from t.
 - (d) 5 points Let G be a directed graph. For a pair of vertices s and t, design an efficient algorithm to find a minimum-cardinality set of vertices the deletion of which will disconnect s from t. [Note: after the deletion of the vertices there could still be paths from t to s]
- 2. (a) 7 points Given an empty Fibonacci heap, construct an example of a sequence of insert, decrease-key and extract-min operations such that two cascading cut operations occur. The construction of the heap should be clearly given step-by-step.
 - (b) 8 points For a particular implementation $\mathfrak I$ of Fibonacci heaps, the code for the Cascading-Cut sub-operation is wrong and none of the steps of Cascading-Cut are executed whenever the Cascading-Cut function is called (all other operations including the Cut operation work as taught in class). Construct an example starting from an empty Fibonacci heap such that using the implementation $\mathfrak I$ the amortized cost of a Fib-Heap-Decrease-Key operation is no longer $O(\log n)$. The step-by-step construction of the heap

and the argument for why the amortized cost of Fib-Heap-Decrease-Key is no longer $O(\log n)$ should be clearly given.

- 3. (a) 3 points Give an example of a connected graph \mathcal{G} with at least 10 vertices and a matching \mathcal{M} such that there is a flower in \mathcal{G} with respect to \mathcal{M} .
 - (b) 4 points Show, step by step, how the alternating breadth-first search algorithm in Edmond's blossom algorithm can find the flower of part (i).
 - (c) 4 points What is the worst-case running time of Edmond's blossom algorithm? Prove it.
 - (d) 4 points What is the worst-case running time of Edmond's blossom algorithm when the input graph is a bipartite graph? Prove it.
- 4. Design a O(mn) time algorithm to compute a blocking flow in the layered graph, defined in the context of Dinic's algorithm for computing a maximum s t flow.
 - (a) 3 points Clearly explain the algorithm.
 - (b) 4 points Write pseudo-code of your algorithm.
 - (c) 4 points Prove its correctness.
 - (d) |4 points| Prove that its time complexity is indeed O(mn).