Practice Problems: PIT and Karger's Algorithm

Palash Dey Indian Institute of Technology, Kharagpur

March 19, 2024

- 1. Compute the running time of the polynomial identity testing algorithm discussed in the class where the input polynomial is over a finite field \mathbb{F} and its total degree is $d < |\mathbb{F}|$.
- 2. In the k-cut problem, the input is a unweighted graph and the goal is to compute the minimum number of edges that needs to be removed to partition the graph into k components. Adapt the Karger's min-cut algorithm to design a randomized $O(n^{2k})$ -time algorithm for the k-cut problem.
- 3. Suitably modify the Karger's mincut algorithm to have a randomized algorithm for computing a minimum cut in a positive edge-weighted graph.