## Practice Problems: LP Rounding for Approximation Algorithm

## Palash Dey Indian Institute of Technology, Kharagpur

March 9, 2024

- 1. In the maximum weighted cut problem, we are given an edge-weighted undirected graph and we need to compute a paritition (U,W) of the vertices of the graph which maximizes the sum of the weights of the edges between U and W. Design a  $\frac{1}{2}$  factor approximation algorithm for this problem.
- 2. In the maximum weighted directed cut problem, we are given an edge-weighted directed graph and we need to compute a paritition (U,W) of the vertices of the graph which maximizes the sum of the weights of the edges from U to W. Design a  $\frac{1}{4}$  factor approximation algorithm for this problem.
- 3. Show that the following integer linear program models the maximum weighted directed cut problem:

$$\begin{split} & \text{minimize} & & \sum_{e \in \mathcal{E}} w_e z_e \\ & \text{s.t.} & & \forall (\mathfrak{u}, \nu) \in \mathcal{E}, z_{\mathfrak{u}\nu} \leqslant x_{\mathfrak{u}} \\ & & \forall (\mathfrak{u}, \nu) \in \mathcal{E}, z_{\mathfrak{u}\nu} \leqslant 1 - x_{\nu} \\ & & \forall e \in \mathcal{E}, z_e \in \{0, 1\} \\ & & \forall \nu \in \mathcal{V}, x_{\nu} \in \{0, 1\} \end{split}$$

Consider the randomized rounding algorithm which takes an optimal solution  $(x^*, z^*)$  of the linear programming relaxation of the ILP above and puts every vertex  $\nu$  in U with probability  $\frac{1}{4} + \frac{1}{2}x^*_{\nu}$ . Show that this randomized algorithm achieves an approximation factor of  $\frac{1}{2}$ .

4. Consider the non-linear randomized rounding algorithm for MAXSAT discussed in the class. Let  $(y^*, z^*)$  be an optimal solution of the LP relaxation of the standard ILP formulation of MAXSAT. Show that setting  $x_i$  to true with probability  $f(y_i^*) = \frac{1}{2}y_i^* + \frac{1}{4}$ 

$$f(y_i^*) = \begin{cases} \frac{3}{4}y_i^* + \frac{1}{4} & \text{if } 0 \leqslant y_i^* \leqslant \frac{1}{3} \\ \frac{1}{2} & \text{if } \frac{1}{3} \leqslant y_i^* \leqslant \frac{2}{3} \\ \frac{3}{4}y_i^* & \text{if } \frac{2}{3} \leqslant y_i^* \leqslant 1 \end{cases}$$

gives a  $\frac{3}{4}$  factor approximation algorithm for MAXSAT.

- 5. Show that the total expected facility cost of the randomized rounding algorithm discussed in the class is at most LP-OPT.
- 6. Design a randomized rounding based algorithm for set cover which returns a  $O(\log n)$  factor approximate solution with probability at least  $\frac{2}{3}$ .
- 7. You are given a vertex weighted undirected graph and a valid k coloring of it. Design a polynomial-time  $2\left(1-\frac{1}{k}\right)$  factor approximation algorithm for minimum weighted vertex cover of this graph.
- 8. Derandomize all the randomized approximation algorithms discussed in the class.