Problem Set 6

Martingales

- 1. Show that the sequence $\{S_n\}$ is a martingale in each of the following settings.
 - (a) X_1, X_2, \ldots are a sequence of integer valued random variables and $S_0 = 0, S_1 = S_0 + X_1, \ldots, S_n = X_n + S_{n-1}$ are the partial sums. Assume $\mathbf{E}[X_{n+1}|S_1, \ldots, S_n] = 0$.
 - (b) X_0, X_1, \ldots is a discrete time Markov chain with transition matrix $P = (p_{i,j})$ and the state space S is countable. $\psi: S \to \mathbb{R}$ is a bounded function which satisfies

$$\sum_{j \in S} p_{i,j} \psi(j) = \psi(i),$$

and define $S_n = \psi(X_n) \quad \forall n$.

- 2. Suppose that X_1, X_2, \ldots are independent random variables each with mean zero and finite variance. $Y_n = \sum_{i=1}^n X_i$ and $S_n = Y_n^2 = \sum_{i=1}^n$, where σ_i is the standard deviation of X_i . Show that the sequence $\{S_n\}$ a maringale with respect to the sequence $\{X_n\}$.
- 3. Let X_0, X_1, \ldots be a sequence of random variables and let $S_n = \sum_{i=1}^n X_i$ for all n. Show that if $\{S_n\}$ is a martingale with respect to $\{X_n\}$ then for all $i \neq j$, $\mathbf{E}[X_i X_j] = 0$.
- 4. Given a bag with r red balls and b black balls, suppose that we uniformly sample n balls from the bin without replacement. Set up an appropriate martingale and use it to show that the number of red balls in the sample is tightly concentrated around nr/(r+b).
- 5. Let X_1, X_2, \ldots, X_n be independent random variables with range [0,1] and let $S_n = \sum_{i=1}^n X_i$. Show that

$$\Pr[|S_n - \mathbf{E}[S_n]| > \lambda] \le 2e^{-2\lambda^2}.$$

6. Suppose there are n servers sharing a communication channel. At each time step, each server sends one message with probability 1/n. Message transmission is successful in a time step if only one server sends in that time step. What is the expected number of time steps until all servers have sent at least one message?