Lecture Notes: Hall's Theorem and König's Theorem from Max-Flow Min-Cut Theorem

Palash Dey palash.dey@cse.iitkgp.ac.in Indian Institute of Technology Kharagpur

August 15, 2023

Theorem 1 (Max-Flow Min-Cut) The value of a maximum s-t flow in a network is the capacity of a minimum s-t cut in that network.

We prove Hall's Theorem and König's Theorem from the above max-flow min-cut Theorem. Let $\mathcal{G}(\mathcal{V} = \mathcal{A} \biguplus \mathcal{B}, \mathcal{E})$ be a bipartite graph. We are interested in finding a perfect matching in \mathcal{G} — a set \mathcal{M} of edges with no two having a common end point and every vertex is covered by \mathcal{M} . For a subset $\mathcal{X} \subseteq \mathcal{A}$, we denote its neighborhood $\{b \in \mathcal{B} : \exists x \in \mathcal{X} \text{ such that } \{x, b\} \in \mathcal{E}\}$ by $\mathcal{N}(\mathcal{X})$. Clearly a necessary condition for existence of a perfect matching in \mathcal{G} is $|\mathcal{X}| \leq |\mathcal{N}(\mathcal{X})|$ for every $\mathcal{X} \subseteq \mathcal{A}$. Hall's Theorem says that this condition is also sufficient.

Theorem 2 (Hall's Theorem) A bipartite graph $\mathcal{G}(\mathcal{V} = \mathcal{A} \biguplus \mathcal{B}, \mathcal{E})$ has a perfect matching if and only if $|\mathcal{X}| \leq |\mathcal{N}(\mathcal{X})|$ for every $\mathcal{X} \subseteq \mathcal{A}$.

We orient the edges of \mathcal{G} from \mathcal{A} to \mathcal{B} , add two vertices namely s and t, add edges from ss to every vertex in \mathcal{A} , add edges from every vertex in \mathcal{B} to t, and define the capacity of every edge to be one. Let us call the resulting graph \mathcal{G}' . It is easy to see that the value of a maximum flow from s to t is k if and only if the size maximum matching in \mathcal{G} is k. We know from max-flow min-cut Theorem that there is an s - t cut $(\mathcal{U}, \mathcal{V} \setminus \mathcal{U})$ of capacity (which is the number of edges in this case since all the capacities are one) k. Let us define $\mathcal{A}_1 = \mathcal{U} \cap \mathcal{A}$ and $\mathcal{B}_1 = \mathcal{U} \cap \mathcal{B}$. Let the number of edges from \mathcal{A}_1 to $\mathcal{B} \setminus \mathcal{B}_1$ be ℓ and $n = |\mathcal{A}| = |\mathcal{B}|$. Then we have the following.

$$\begin{aligned} |\mathcal{A} \setminus \mathcal{A}_1| + |\mathcal{B}_1| + \ell &= k \\ \Rightarrow |\mathcal{B}_1| + \ell &= k - |\mathcal{A} \setminus \mathcal{A}_1| \end{aligned}$$

We observe

$$|\mathsf{N}(\mathcal{A}_1)| \leq |\mathcal{B}_1| + \ell = k - |\mathcal{A} \setminus \mathcal{A}_1| = |\mathcal{A}_1| - (n-k)$$

which proves Hall's Theorem.

A vertex cover of a graph is a set of vertices which contains at least one end point of every edge. Hence, the size of a maximum matching puts a lower bound on the size of the minimum vertex cover of the graph. König's Theorem says that the lower bound is always achievable in bipartite graphs.

Theorem 3 (König's Theorem) The size of a minimum vertex cover is the same as the size of a maximum cardinality matching in every bipartite graph.

Continuing our set-up from the proof of Hall's Theorem, we consider the set $\mathcal{W} = \mathcal{N}(\mathcal{A}_1) \cup (\mathcal{A} \setminus \mathcal{A}_1)$ which is a vertex cover of \mathcal{G} . Now

$$|\mathcal{W}| = |\mathcal{N}(\mathcal{A}_1)| + |\mathcal{A} \setminus \mathcal{A}_1| \leqslant |\mathcal{A}_1| - n + k + (n - |\mathcal{A}_1|) = k$$

which proves König's Theorem (recall, k is the size of a maximum cardinality matching in 9).