Indian Institute of Technology Kharagpur

CS31005 Algorithms II - Class Test 2
Total marks: 30
Duration: 1 hr
Name:
Roll Number:

Answer all questions.

1. (10 points) Consider a variant \mathcal{A} of the Karger Stein Algorithm:

Input: G
If $n \geqslant 6$, do 2 runs of the following and output the best of the 2 :
Step 1. Use Karger's algorithm to contract vertices until $\frac{n}{\sqrt{2}}+1$ vertices are left, in the resultant graph G^{\prime}
Step 2. Recurse \mathcal{A} on G^{\prime}.
If $n<6$, run Karger's algorithm.
Answer the following questions:

1. Write a recurrence relation for the running time function and derive an upper bound on the running time of 1 run of the algorithm.
2. Write a recurrence relation for the success probability of the algorithm and derive a lower bound on the success probability of 1 round of the algorithm.
3. Analyse the running time of (possibly multiple runs of) this algorithm if we need the success probability to be a constant.
4. (a) (2 points) Define the 3-Dimensional Matching and Set Cover problems.
(b) (2 points) Prove that both the 3-Dimensional Matching and Set Cover problems are in NP.
(c) (6 points) Show a many-to-one Karp reduction from the 3-Dimensional Matching to Set Cover.
5. Answer to Question 1 Part 1 (6 marks): Recurrence for running time is $T(n) \leqslant 2 T\left(\frac{n}{\sqrt{2}}\right)+\mathcal{O}\left(n^{2}\right)$.

Base case is when $n \leqslant 6$ as $\frac{6}{\sqrt{2}} \leqslant 2$. When only 2 vertices are left, Karger's Algorithm returns all edges remaining as the minimum cut in $\mathcal{O}(m)=\mathcal{O}\left(n^{2}\right)$ time.
By Master's Theorem, $\mathrm{T}(\mathrm{n})=\mathcal{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$.
2. Answer to Question 1 Part 2 (2 marks): By choice of contracting till $\frac{n}{\sqrt{2}}+1$ vertices, the probability of success to contract from n vertices to $\frac{n}{\sqrt{2}}+1$ vertices is at least $1 / 2$.
Recurrence for probability of success if $\mathrm{P}(\mathrm{n}) \geqslant 1-\left(1-\frac{1}{2} \mathrm{P}\left(\frac{\mathrm{n}}{\sqrt{2}}\right)\right)^{2}$. Use induction method to show that $P(n)=c \frac{1}{\log n}$.
3. Answer to Question 1 Part 3 (2 marks): For the success probability to be at least a constant, we need to have $\mathrm{O}(\log n)$ runs of the algorithm and report the minimum cut amongst the results from each of the runs, and therefore the total running time shall be $O\left(n^{2} \log ^{2} n\right)$.
4. Answer to Question 2 part 3: Given an instance $(X \uplus Y \uplus Z, \mathcal{F})$ of 3D Matching (size of each set X, Y, Z is n) we construct the instance $(X \cup Y \cup Z, \mathcal{F}, n)$ for Set Cover. It needs to be checked that the universe $X \cup Y \cup Z$ can be covered with at most n sets of \mathcal{F} if and only if $X \uplus Y \uplus Z$ has a 3D matching in \mathcal{F}.
First suppose F^{\prime} is a 3D matching, then F^{\prime} is also a set cover of $X \cup Y \cup Z$ with n sets.
On the other hand, suppose F^{\prime} is a subfamily of at most n covering all elements of $X \cup Y \cup Z$. Since X, Y, Z are three disjoint sets and each set in \mathcal{F} can cover exactly 3 items, we need at least n sets in F^{\prime} to cover all elements. Thus, F^{\prime} must have exactly n elements and we can only afford to cover each of the $3 n$ universe elements exactly once - hence F^{\prime} is a 3D matching for $\mathrm{X} \uplus \mathrm{Y} \uplus \mathrm{Z}$.

