Parameterized Algorithms via Set Systems, Polynomials etc.

Some slides from Dr. Pranabendu Misra

Inclusion-Exclusion Principle

Inclusion-Exclusion

Theorem

Let A_1, A_2, \ldots, A_k be subsets of a universe U, and let $B_i = U \setminus A_i$. Then

$$|\bigcap_{i \in [k]} A_i| = \sum_{X \subseteq [k]} (-1)^{|X|} |\cap_{j \in X} B_j|$$

Unweighted STEINER TREE: Given a graph G in n vertices, a subset K of k terminals, find a subgraph(tree) on at most ℓ edges that connects all the terminals.¹

Theorem

Unweighted STEINER TREE can be solved in $2^k \cdot poly(n)$ time.

Using Inclusion-Exclusion

 $^{{}^{1}\}ell \geq k$, and we can always guess the smallest value of ℓ for which a Steiner Tree exists.

Intuition:

• We solve the <u>Counting Problem</u>.

If the number of ℓ -edge subtrees of G containing K is non-zero, then a STEINER TREE on ℓ edges exists.

- Counting trees is <u>hard</u>, so we count an easier object called <u>Branching Walks</u>.
- We count Branching Walks via Inclusion-Exclusion.

Ordered Rooted Tree : A tree H where vertices have been labeled by $\{0, 2, 3, \ldots, |V(H)| - 1\}$ via a DFS. Alternatively, every internal node of H has an ordering among it's children.

Let $r \in V(H)$ denote the root of H.

Branching Walk : A Homomorphic Image of an ordered rooted tree in G. It is a pair B = (H, h) where H is an ordered rooted tree, and $h: V(H) \to V(G)$ is a map such that if $(x, y) \in E(H)$ then $(h(x), h(y) \in E(G)$.

Let $V(B) = \{h(x) \mid x \in V(H)\}$, and s = h(r) be the <u>root</u> of *B*.

Ordered Rooted Tree : A tree H where vertices have been labeled by $\{0, 2, 3, \ldots, |V(H)| - 1\}$ via a DFS. Alternatively, every internal node of H has an ordering among it's children.

Let $r \in V(H)$ denote the root of H.

Branching Walk : A Homomorphic Image of an ordered rooted tree in *G*. It is a pair B = (H, h) where *H* is an ordered rooted tree, and $h: V(H) \rightarrow V(G)$ is a map such that if $(x, y) \in E(H)$ then $(h(x), h(y)) \in E(G)$. Let $V(B) = \{h(x) \mid x \in V(H)\}$, and s = h(r) be the <u>root</u> of *B*.

Lemma

Fix a terminal $s \in K$ as the <u>root</u>. G contains a Steiner Tree on \mathcal{U} edges if and only if there is a Branching Walk B = (H, h) from s such that $K \subseteq V(B)$, and $|E(H)| = \ell$.

Call $\ell = |E(H)|$ the length of the Branching Walk.

Counting Branching Walks from *s*.

- Universe U = all Branching walks of length ℓ from s
- For each $v \in K$, $A_v = \{B \in U \mid v \in V(B)\}$
- Clearly $|\bigcap_{v \in K} A_v| \neq 0$ if and only if there is a Steiner Tree.
- Sufficient: Given $X \subseteq K$ compute $|\bigcap_{v \in X} B_v|$ where $B_v = U \setminus A_v$.

 $\bigcap_{v \in X} B_v$ is the set of all Branching Walks that avoid X

• They lie in the graph
$$G - X$$
,

so enough to count all Branching Walks from s in the graph G - X of length ℓ .

Lemma

 $|\bigcap_{v \in X} B_v|$ can be computed in polynomial time.

Computing $|\bigcap_{v \in X} B_v|$:

- Let G' = G X. It contains all Branching Walks avoiding X.
- For $u \in V(G')$ and $j \leq \ell$ let $b_j(u)$ denote the number of Branching Walks from u of length j in G'.
- We want the value $b_{\ell}(s) = |\bigcap_{v \in X} B_v|$, assuming that $s \in V(G')$.
- Dynamic Programming:

$$b_j(u) = \begin{cases} 1 & \text{if } j = 0\\ \sum_{w \in N_{G'}(a)} \sum_{j_1+j_2=j-1} b_{j_1}(u)b_{j_2}(w) & \text{otherwise} \end{cases}$$

*Importance of the ordering of the leaves in the branching walk definition

Counting Steiner Trees

• Once we have the numbers $|\bigcap_{v \in X} B_v|$ for every $X \subseteq K$, we can compute the number of Steiner Trees via the Inclusion-Exclusion formula

$$\left|\bigcap_{v\in K} A_v\right| = \sum_{X\subseteq K} (-1)^{|X|} \left|\cap_{u\in X} B_u\right|$$

• Running Time:
$$2^k \cdot poly(n)$$
.

This approach can be applied to many other problems such as HAMILTONIAN PATH, CHROMATIC NUMBER etc.

CHROMATIC NUMBER

A k-colouring of a graph G is a function $c: V(G) \rightarrow [k]$, such that $c(u) \neq c(v)$ if $uv \in E(G)$.

CHROMATIC NUMBER Input: A graph *G* and an integer *k* Question: Is there a *k*-colouring of *G*?

 $O^*(2^n)$ time algorithm by applying Inclusion-Exclusion.

Properties of *k*-colourings

Given a *k*-colouring:

- Each colour class must be an independent set.
- Every subset of an independent set is also an independent set.
- G has a k-colouring if and only if there is a cover of V(G) by k independent sets, i.e., there are k independent sets l_1, \ldots, l_k such that $\bigcup_{j=1}^k l_j = V(G)$.

k-colouring and Counting

- Enough to find a cover of V(G) by k independent sets.
- Enough to compute the number of covers of V(G) by k independent sets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- If the number is non-zero then G has a k-colouring.
- Try to design an Inclusion-Exclusion algorithm.

Setting up Inclusion-Exclusion

Universe U: set of tuples (I₁,..., I_k) where each I_j is an independent set (need not be disjoint).

- For each $v \in V(G)$, define $A_v = \{(I_1, \dots, I_k) \in U | v \in \bigcup_{j=1}^k I_j\}.$
- Number of covers of size $k: |\bigcap_{v \in V(G)} A_v|$.

Computing $|\bigcap_{v \in V(G)} A_v|$

- Need to compute $\sum_{X \subseteq V(G)} (-1)^{|X|} |\bigcap_{v \in X} B_v|$, where $B_v = U \setminus A_v$.
- Need to compute for each $X \subseteq V(G)$, $|\bigcap_{v \in X} B_v|$ = $|\{(I_1, \ldots, I_k) \in U | I_1, \ldots, I_k \subseteq V(G) \setminus X\}|.$
- for $Y \subseteq V(G)$, s(Y) is the number of independent sets in G[Y].
- $|\{(I_1,\ldots,I_k)\in U|I_1,\ldots,I_k\subseteq V(G)\setminus X\}|=s(V(G)\setminus X)^k.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Computing $s(V(G) \setminus X)^k$, $X \subseteq V(G)$

- Compute s(Y) for all Y ⊆ V(G) through dynamic programming with an algorithm using O*(2ⁿ) time and space.
- Recursion: $s(Y) = s(Y \setminus \{y\}) + s(Y \setminus N[y])$.
- Finally, $s(V(G) \setminus X)^k$ can be computed from $s(V(G) \setminus X)$ by log k multiplications of O(nk)-bit numbers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Inclusion-Exclusion algorithm

- O^{*}(2ⁿ) time algorithm for Chromatic Number. Space complexity is also O^{*}(2ⁿ).
- Can be decrease space complexity even if time complexity goes up a little?
- If s(Y) is computed recursively instead of storing values in a table, then for each Y time taken is O*(2|Y|), but space complexity becomes polynomial!
- Total time complexity for Chromatic Number using polynomial space:
 (Σ_{X⊂V(G)}2^{|V(G)\X|})n^{O(1)} = (Σⁿ_{k=0}(ⁿ_k)2^{n-k})n^{O(1)} = O^{*}(3ⁿ).

Note: Best time complexity for Chromatic Number using polynomial space = $2.238^n n^{O(1)}$.

Multivariate Polynomials: FPT Algorithms

Multivariate Polynomials

- Finite Field: A tuple (F, +, ★) capturing arithmetic in a finite set. Subtraction, division well defined; Field axioms: Associativity, Commutativity, additive and multiplicative identity and inverse, Distributivity.
- Characteristic 2: For any $a \in \mathbb{F}_{1}a + a = 0$. Note that $|\mathbb{F}| >> 2$ is possible.
- Polynomials over \mathbb{F} : coefficients $a_{\dots} \in \mathbb{F}$

$$P(x_1, x_2, \dots, x_n) = \sum_{(c_1, c_2, \dots, c_n) \in (\mathbb{N} \cup \{0\})^n} a_{c_1, c_2, \dots, c_n} x_1^{c_1} x_2^{c_2} \dots x_n^{c_n}$$

degree of $P = \max_{(c_1, c_2, ..., c_n) | a_{c_1, c_2, ..., c_n} \neq 0} \sum c_i$ where

• Identically Zero Polynomial: $P \equiv 0$ means $P(x_1 = b_1, x_2 = b_2, \dots, x_n = b_n) = 0$ for all choices in \mathbb{F}^n

Lemma (Schwartz-Zippel)

Let P be a polynomial over a field \mathbb{F} of degree d, and let $S \subseteq \mathbb{F}$. Pick b_1, b_2, \ldots, b_n randomly from S. If $P \not\equiv 0$, then $P(b_1, b_2, \ldots, b_n) = 0$ with probability at most d/|S|.

k-Path

k-PATH: Given a graph G and an integer k, decide if G contains a path of length k.

Theorem

There is a randomized FPT algorithm for k-PATH running in time $2^k \cdot poly(n)$.

* Schwartz-Zippel lemma used as a subroutine

k-Path

k-PATH: Given a graph G and an integer k, decide if G contains a path of length k.

Theorem

There is a randomized FPT algorithm for k-PATH running in time $2^k \cdot poly(n)$.

Intuition

- Encode k-walks as monomials of a polynomial
- Ensure the walks "cancel out" (using characteristic 2), hence the polynomial encodes only k-paths
- The polynomial is non-zero means there is a k-path. Test using Schwartz-Zippel Lemma.

Path to Polynomials

- variables $x = \langle x_1, \dots, x_m \rangle$ for edges, $y = \langle y_1, \dots, y_n \rangle$ for vertices.
- Path polynomial (hard to eval)

$$P(x,y) = \sum_{k \text{-Path } R \in G} (\prod_{(v_i, v_{i+1}) \in R} x_{v_i, v_{i+1}}) \cdot (\prod_{v_i \in R} y_{v_i})$$

• Walk polynomial (easy to eval, but not very useful)

$$P(x,y) = \sum_{k-\text{Walk } W \in G} \left(\prod_{(v_i,v_{i+1}) \in W} x_{v_i,v_{i+1}}\right) \cdot \left(\prod_{v_i \in W} y_{v_i}\right)$$

• Labeled Walk Polynomial.

- vertex variable set $y = \{y_{v,i} \mid v \in V(G), i \in [k]\}$
- For a bijective function $\ell:[k]\to [k]$ and a $k\text{-Walk}\ W$ we have the monomial

 $mon(W, \ell) = (\prod_{(v_i, v_{i+1}) \in W} x_{v_i, v_{i+1}}) \cdot (\prod_{v_i \in W} y_{v_i, \ell(i)})$

$$P(x,y) = \sum_{\text{Walks } W} \sum_{\text{bijection } \ell} mon(W,\ell)$$

Path to polynomials

Lemma Over a field of characteristic 2, $P(x,y) \equiv \sum_{Paths \ R} \sum_{bijection \ \ell} mon(R,\ell)$

- Any k-Walk W corresponds to a number of labeled walks, one for each bijection $\ell : [k] \to [k]$.
- For a k-Path R, every bijection ℓ gives a distinct monomial.
- However for a walk W, for every bijection ℓ there is another bijection ℓ' that produces the same monomial, and they cancel out.
 - For a walk W where a vertex v repeats at pos a and b
 - Given $\ell : [k] \to [k]$ define

$$\ell'(i) = \begin{cases} \ell(b) & i = a \\ \ell(a) & i = b \\ \ell(i) & \text{otherwise} \end{cases}$$

Path to polynomials

Lemma

Over a field of characteristic 2,

$$P(x,y) \equiv \sum_{Paths \ R} \sum_{bijection \ \ell} mon(R,\ell)$$

Corollary

The polynomial P(x, y) is non-zero over fields of characteristic 2 if and only if G contains a k-path.

- We test if $P \equiv 0$ using the Schwartz-Zippel Lemma
- We randomly pick an assignment of the variables from \mathbb{F} and then evaluate P.
- Evaluating P will require an algorithm based on Inclusion-Exclusion.

Theorem (Weighted Inclusion Exclusion)

Let A_1, A_2, \ldots, A_k be subsets of a universe U, and let $B_i = U \setminus A_i$. Let $w : U \to \mathbb{R}$ be a weight function Then

$$w(\bigcap_{i\in[k]}A_i) = \sum_{X\subseteq[k]}(-1)^{|X|}w(\cap_{j\in X}B_j)$$

Fix a walk W

- Universe U = all functions $[k] \rightarrow [k]$
- for $\ell \in U$, define $w(\ell) = mon(W, \ell)$
- For each $i \in [k], A_i = \{\ell \in U \mid \ell^{-1}(i) \neq \emptyset\}$
- Then $w(\cap_{i \in [k]} A_i) = \sum_{\text{bijection } \ell} mon(W, \ell)$
- $w(\bigcap_{i\in[k]}A_i) = \sum_{X\subseteq[k]}w(\bigcap_{j\in X}B_j),$
- and $\sum_{X \subseteq [k]} w(\cap_{j \in X} B_j) = \sum_{X \subseteq [k]} \sum_{\ell : [k] \to [k] \setminus X} mon(W, \ell),$

Therefore,

$$P(x,y) = \sum_{\text{Walks } W} \sum_{\substack{\text{bijection } \ell \\ Walks } W} \min(W,\ell)$$
$$= \sum_{\text{Walks } W} \sum_{\substack{X \subseteq [k] \\ \ell : [k] \to [k] \setminus X}} \min(W,\ell)$$

$$P(x,y) = \sum_{X \subseteq [k]} \sum_{\text{Walks } W} \sum_{\ell: [k] \to [k] \setminus X} mon(W,\ell)$$

• fixing $X \subseteq [k]$ and let $Y = [k] \setminus X$ we obtain a polynomial

$$P_Y(x,y) = \sum_{\text{Walks } W} \sum_{\ell:[k] \to Y} mon(W,\ell)$$

- To evaluate $P_Y(x, y)$ we use Dynamic Programming.
- For $d \leq k$, and vertex v

$$T[v,d] = \sum_{\text{Walk } W: v = v_1 v_2 \dots v_d} \sum_{\ell: [d] \to Y} (\prod_{e \in W} x_e) (\prod [v_i \in W y_{v_i,\ell(i)})$$

We want the value T[v, k] for all vertices $v \in V(G)$.

$$T[v,d] = \begin{cases} \sum_{i \in Y} y_{v,i} & d = 1\\ \sum_{i \in Y} y_{v,i} \sum_{(v,w) \in E(G)} x_{v,w} \cdot T[w,d-1] & \text{otherwise} \end{cases}$$

Once we have computed this table,

$$P_Y(x,y) = \sum_{v \in V(G)} T[v,k]$$

Then over all $Y \subseteq [k]$

$$P(x,y) = \sum_{Y \subseteq [k]} P_Y(x,y)$$

Summary: *k*-Path via Polynomials

Theorem

There is a randomized FPT algorithm for k-PATH running in time $2^k \cdot poly(n)$.

Mainly time for evaluating the polynomial P(x,y).