Parameterized Algorithms via Set Systems, Polynomials etc.

Some slides from Dr. Pranabendu Misra

Inclusion-Exclusion Principle

Inclusion-Exclusion

Theorem

Let $A_{1}, A_{2}, \ldots, A_{k}$ be subsets of a universe U, and let $B_{i}=U \backslash A_{i}$. Then

$$
\left|\bigcap_{i \in[k]} A_{i}\right|=\sum_{X \subseteq[k]}(-1)^{|X|}\left|\cap_{j \in X} B_{j}\right|
$$

Unweighted Steiner Tree

Unweighted Steiner Tree: Given a graph G in n vertices, a subset K of k terminals, find a subgraph(tree) on at most ℓ edges that connects all the terminals. ${ }^{1}$

Theorem

Unweighted Steiner Tree can be solved in $2^{k} \cdot \operatorname{poly}(n)$ time.

Using Inclusion-Exclusion

[^0]
Unweighted Steiner Tree

Intuition:

- We solve the Counting Problem.

If the number of ℓ-edge subtrees of G containing K is non-zero, then a Steiner Tree on ℓ edges exists.

- Counting trees is hard, so we count an easier object called Branching Walks.
- We count Branching Walks via Inclusion-Exclusion.

Unweighted Steiner Tree

Ordered Rooted Tree : A tree H where vertices have been labeled by $\{0,2,3 \ldots,|V(H)|-1\}$ via a DFS. Alternatively, every internal node of H has an ordering among it's children.

Let $r \in V(H)$ denote the root of H.
Branching Walk : A Homomorphic Image of an ordered rooted tree in G. It is a pair $B=(H, h)$ where H is an ordered rooted tree, and $h: V(H) \rightarrow V(G)$ is a map such that if $(x, y) \in E(H)$ then $(h(x), h(y) \in E(G)$.

Let $V(B)=\{h(x) \mid x \in V(H)\}$, and $s=h(r)$ be the root of B.

Unweighted Steiner Tree

Ordered Rooted Tree : A tree H where vertices have been labeled by $\{0,2,3 \ldots,|V(H)|-1\}$ via a DFS. Alternatively, every internal node of H has an ordering among it's children.

Let $r \in V(H)$ denote the root of H.
Branching Walk : A Homomorphic Image of an ordered rooted tree in G. It is a pair $B=(H, h)$ where H is an ordered rooted tree, and $h: V(H) \rightarrow V(G)$ is a map such that if $(x, y) \in E(H)$ then $(h(x), h(y)) \in E(G)$.

Let $V(B)=\{h(x) \mid x \in V(H)\}$, and $s=h(r)$ be the root of B.

Lemma

Fix a terminal $s \in K$ as the root. G contains a Steiner Tree onsl edges if and only if there is a Branching Walk $B=(H, h)$ from s such that $K \subseteq V(B)$, and $|E(H)|=\ell$.

Call $\ell=|E(H)|$ the length of the Branching Walk.

Unweighted Steiner Tree

Counting Branching Walks from s.

- Universe $U=$ all Branching walks of length ℓ from s
- For each $v \in K, A_{v}=\{B \in U \mid v \in V(B)\}$
- Clearly $\left|\bigcap_{v \in K} A_{v}\right| \neq 0$ if and only if there is a Steiner Tree.
- Sufficient: Given $X \subseteq K$ compute $\left|\bigcap_{v \in X} B_{v}\right|$ where $B_{v}=U \backslash A_{v}$.

$$
\bigcap_{v \in X} B_{v} \text { is the set of all Branching Walks that avoid } X
$$

- They lie in the graph $G-X$,
so enough to count all Branching Walks from s in the graph $G-X$ of length ℓ.

Lemma

$\left|\bigcap_{v \in X} B_{v}\right|$ can be computed in polynomial time.

Unweighted Steiner Tree

Computing $\left|\bigcap_{v \in X} B_{v}\right|$:

- Let $G^{\prime}=G-X$. It contains all Branching Walks avoiding X.
- For $u \in V\left(G^{\prime}\right)$ and $j \leq \ell$ let $b_{j}(u)$ denote the number of Branching Walks from u of length j in G^{\prime}.
- We want the value $b_{\ell}(s)=\left|\bigcap_{v \in X} B_{v}\right|$, assuming that $s \in V\left(G^{\prime}\right)$.
- Dynamic Programming:

$$
b_{j}(u)=\left\{\begin{array}{ll}
1 & \text { if } j=0 \\
\sum_{w \in N_{G^{\prime}}(a)} \sum_{j_{1}+j_{2}=j-1} & b_{j_{1}}(u) b_{j_{2}}(w)
\end{array} \quad\right. \text { otherwise }
$$

*Importance of the ordering of the leaves in the branching walk definition

Unweighted Steiner Tree

Counting Steiner Trees

- Once we have the numbers $\left|\bigcap_{v \in X} B_{v}\right|$ for every $X \subseteq K$, we can compute the number of Steiner Trees via the Inclusion-Exclusion formula

$$
\left|\bigcap_{v \in K} A_{v}\right|=\sum_{X \subseteq K}(-1)^{|X|}\left|\cap_{u \in X} B_{u}\right|
$$

- Running Time: $2^{k} \cdot \operatorname{poly}(n)$.

This approach can be applied to many other problems such as Hamiltonian Path, Chromatic Number etc.

Chromatic Number

A k-colouring of a graph G is a function $c: V(G) \rightarrow[k]$, such that $c(u) \neq c(v)$ if $u v \in E(G)$.

Chromatic Number
Input: A graph G and an integer k
Question: Is there a k-colouring of G ?
$O^{*}\left(2^{n}\right)$ time algorithm by applying Inclusion-Exclusion.

Properties of k-colourings

Given a k-colouring:

- Each colour class must be an independent set.
- Every subset of an independent set is also an independent set.
- G has a k-colouring if and only if there is a cover of $V(G)$ by k independent sets, i.e., there are k independent sets I_{1}, \ldots, I_{k} such that $\bigcup_{j=1}^{k} I_{j}=V(G)$.

k-colouring and Counting

- Enough to find a cover of $V(G)$ by k independent sets.
- Enough to compute the number of covers of $V(G)$ by k independent sets.
- If the number is non-zero then G has a k-colouring.
- Try to design an Inclusion-Exclusion algorithm.

Setting up Inclusion-Exclusion

- Universe U : set of tuples $\left(I_{1}, \ldots, I_{k}\right)$ where each I_{j} is an independent set (need not be disjoint).
- For each $v \in V(G)$, define

$$
A_{v}=\left\{\left(I_{1}, \ldots, I_{k}\right) \in U \mid v \in \bigcup_{j=1}^{k} I_{j}\right\} .
$$

- Number of covers of size $k:\left|\bigcap_{v \in V(G)} A_{v}\right|$.

Computing $\left|\bigcap_{v \in V(G)} A_{v}\right|$

- Need to compute $\Sigma_{X \subseteq V(G)}(-1)^{|X|}\left|\bigcap_{v \in X} B_{v}\right|$, where $B_{v}=U \backslash A_{v}$.
- Need to compute for each $X \subseteq V(G),\left|\bigcap_{v \in X} B_{v}\right|$ $=\left|\left\{\left(I_{1}, \ldots, I_{k}\right) \in U \mid I_{1}, \ldots, I_{k} \subseteq V(G) \backslash X\right\}\right|$.
- for $Y \subseteq V(G), s(Y)$ is the number of independent sets in $G[Y]$.
- $\left|\left\{\left(I_{1}, \ldots, I_{k}\right) \in U \mid I_{1}, \ldots, I_{k} \subseteq V(G) \backslash X\right\}\right|=s(V(G) \backslash X)^{k}$.

Computing $s(V(G) \backslash X)^{k}, X \subseteq V(G)$

- Compute $s(Y)$ for all $Y \subseteq V(G)$ through dynamic programming with an algorithm using $O^{*}\left(2^{n}\right)$ time and space.
- Recursion: $s(Y)=s(Y \backslash\{y\})+s(Y \backslash N[y])$.
- Finally, $s(V(G) \backslash X)^{k}$ can be computed from $s(V(G) \backslash X)$ by $\log k$ multiplications of $O(n k)$-bit numbers.

Inclusion-Exclusion algorithm

- $O^{*}\left(2^{n}\right)$ time algorithm for Chromatic Number. Space complexity is also $O^{*}\left(2^{n}\right)$.
- Can be decrease space complexity even if time complexity goes up a little?
- If $s(Y)$ is computed recursively instead of storing values in a table, then for each Y time taken is $O^{*}\left(2^{|Y|}\right)$, but space complexity becomes polynomial!
- Total time complexity for Chromatic Number using polynomial space:

$$
\left(\Sigma_{X \subseteq V(G)} 2^{|V(G) \backslash X|}\right) n^{O(1)}=\left(\sum_{k=0}^{n}\binom{n}{k} 2^{n-k}\right) n^{O(1)}=O^{*}\left(3^{n}\right) .
$$

Note: Best time complexity for Chromatic Number using polynomial space $=2.238^{n} n^{O(1)}$.

Multivariate Polynomials: FPT Algorithms

Multivariate Polynomials

- Finite Field: A tuple ($\mathbb{F},+, \star$) capturing arithmetic in a finite set. Subtraction, division well defined; Field axioms: Associativity, Commutativity, additive and multiplicative identity and inverse, Distributivity.
- Characteristic 2: For any $a \in \mathbb{F}, a+a=0$.

Note that $|\mathbb{F}| \gg 2$ is possible.

- Polynomials over \mathbb{F} : coefficients $a_{\ldots} \in \mathbb{F}$

$$
P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in(\mathbb{N} \cup\{0\})^{n}} a_{c_{1}, c_{2}, \ldots, c_{n}} x_{1}^{c_{1}} x_{2}^{c_{2}} \ldots x_{n}^{c_{n}}
$$

degree of $P=\max _{\left(c_{1}, c_{2}, \ldots, c_{n}\right) \mid a_{c_{1}, c_{2}, \ldots, c_{n} \neq 0} \sum c_{i} \text { where }}$

- Identically Zero Polynomial: $P \equiv 0$ means $P\left(x_{1}=b_{1}, x_{2}=b_{2}, \ldots, x_{n}=b_{n}\right)=0$ for all choices in \mathbb{F}^{n}

Lemma (Schwartz-Zippel)

Let P be a polynomial over a field \mathbb{F} of degree d, and let $S \subseteq \mathbb{F}$. Pick $b_{1}, b_{2}, \ldots, b_{n}$ randomly from S. If $P \not \equiv 0$, then $P\left(b_{1}, b_{2}, \ldots, b_{n}\right)=0$ with probability at most $d /|S|$.
k-Path
k-Path: Given a graph G and an integer k, decide if G contains a path of length k.

Theorem

There is a randomized FPT algorithm for k-PATH running in time $2^{k} \cdot \operatorname{poly}(n)$.

* Schwartz-Zippel lemma used as a subroutine
k-Path: Given a graph G and an integer k, decide if G contains a path of length k.

Theorem

There is a randomized FPT algorithm for k-PATH running in time $2^{k} \cdot \operatorname{poly}(n)$.

Intuition

- Encode k-walks as monomials of a polynomial
- Ensure the walks "cancel out" (using characteristic 2), hence the polynomial encodes only k-paths
- The polynomial is non-zero means there is a k-path. Test using Schwartz-Zippel Lemma.

Path to Polynomials

- variables $x=<x_{1}, \ldots, x_{m}>$ for edges,

$$
y=<y_{1}, \ldots, y_{n}>\text { for vertices }
$$

- Path polynomial (hard to eval)

$$
P(x, y)=\sum_{k \text {-Path } R \in G}\left(\prod_{\left(v_{i}, v_{i+1}\right) \in R} x_{v_{i}, v_{i+1}}\right) \cdot\left(\prod_{v_{i} \in R} y_{v_{i}}\right)
$$

- Walk polynomial (easy to eval, but not very useful)

$$
P(x, y)=\sum_{k \text {-Walk } W \in G}\left(\prod_{\left(v_{i}, v_{i+1}\right) \in W} x_{v_{i}, v_{i+1}}\right) \cdot\left(\prod_{v_{i} \in W} y_{v_{i}}\right)
$$

- Labeled Walk Polynomial.
- vertex variable set $y=\left\{y_{v, i} \mid v \in V(G), i \in[k]\right\}$
- For a bijective function $\ell:[k] \rightarrow[k]$ and a k-Walk W we have the monomial

$$
\begin{aligned}
\operatorname{mon}(W, \ell)= & \left(\prod_{\left(v_{i}, v_{i+1}\right) \in W} x_{v_{i}, v_{i+1}}\right) \cdot\left(\prod_{v_{i} \in W} y_{v_{i}, \ell(i)}\right) \\
P(x, y) & =\sum_{\text {Walks } W} \sum_{\text {bijection } \ell} \operatorname{mon}(W, \ell)
\end{aligned}
$$

Path to polynomials

Lemma

Over a field of characteristic 2,

$$
P(x, y) \equiv \sum_{\text {Paths } R} \sum_{\text {bijection } \ell} \operatorname{mon}(R, \ell)
$$

- Any k-Walk W corresponds to a number of labeled walks, one for each bijection $\ell:[k] \rightarrow[k]$.
- For a k-Path R, every bijection ℓ gives a distinct monomial.
- However for a walk W, for every bijection ℓ there is another bijection ℓ^{\prime} that produces the same monomial, and they cancel out.
- For a walk W where a vertex v repeats at pos a and b
- Given $\ell:[k] \rightarrow[k]$ define

$$
\ell^{\prime}(i)= \begin{cases}\ell(b) & i=a \\ \ell(a) & i=b \\ \ell(i) & \text { otherwise }\end{cases}
$$

Path to polynomials

Lemma

Over a field of characteristic 2,

$$
P(x, y) \equiv \sum_{\text {Paths } R} \sum_{\text {bijection } \ell} \operatorname{mon}(R, \ell)
$$

Corollary

The polynomial $P(x, y)$ is non-zero over fields of characteristic 2 if and only if G contains a k-path.

- We test if $P \equiv 0$ using the Schwartz-Zippel Lemma
- We randomly pick an assignment of the variables from \mathbb{F} and then evaluate P.
- Evaluating P will require an algorithm based on Inclusion-Exclusion.

Evaluating $P(x, y)$

Theorem (Weighted Inclusion Exclusion)

Let $A_{1}, A_{2}, \ldots, A_{k}$ be subsets of a universe U, and let $B_{i}=U \backslash A_{i}$. Let $w: U \rightarrow \mathbb{R}$ be a weight function Then

$$
w\left(\bigcap_{i \in[k]} A_{i}\right)=\sum_{X \subseteq[k]}(-1)^{|X|} w\left(\cap_{j \in X} B_{j}\right)
$$

Evaluating $P(x, y)$

Fix a walk W

- Universe $U=$ all functions $[k] \rightarrow[k]$
- for $\ell \in U$, define $w(\ell)=\operatorname{mon}(W, \ell)$
- For each $i \in[k], A_{i}=\left\{\ell \in U \mid \ell^{-1}(i) \neq \emptyset\right\}$
- Then $w\left(\cap_{i \in[k]} A_{i}\right)=\sum_{\text {bijection } \ell} \operatorname{mon}(W, \ell)$
- $w\left(\bigcap_{i \in[k]} A_{i}\right)=\sum_{X \subseteq[k]} w\left(\cap_{j \in X} B_{j}\right)$,
- and $\sum_{X \subseteq[k]} w\left(\cap_{j \in X} B_{j}\right)=\sum_{X \subseteq[k]} \sum_{\ell:[k] \rightarrow[k] \backslash X} \operatorname{mon}(W, \ell)$,

Therefore,

$$
\begin{aligned}
P(x, y) & =\sum_{\text {Walks } W} \sum_{\text {bijection } \ell} \operatorname{mon}(W, \ell) \\
& =\sum_{\text {Walks } W} \sum_{X \subseteq[k]} \sum_{\ell:[k] \rightarrow[k] \backslash X} \operatorname{mon}(W, \ell)
\end{aligned}
$$

Evaluating $P(x, y)$

$$
P(x, y)=\sum_{X \subseteq[k]} \sum_{\text {Walks } W} \sum_{\ell:[k] \rightarrow[k] \backslash X} \operatorname{mon}(W, \ell)
$$

- fixing $X \subseteq[k]$ and let $Y=[k] \backslash X$ we obtain a polynomial

$$
P_{Y}(x, y)=\sum_{\text {Walks } W} \sum_{\ell:[k] \rightarrow Y} \operatorname{mon}(W, \ell)
$$

- To evaluate $P_{Y}(x, y)$ we use Dynamic Programming.
- For $d \leq k$, and vertex v

$$
T[v, d]=\sum_{\text {Walk } W: v=v_{1} v_{2} \ldots v_{d} \ell:[d] \rightarrow Y} \sum_{e \in W}\left(\prod_{e} x_{e}\right)\left(\prod\left[v_{i} \in W y_{v_{i}, \ell(i)}\right)\right.
$$

We want the value $T[v, k]$ for all vertices $v \in V(G)$.

Evaluating $P(x, y)$

$$
T[v, d]= \begin{cases}\sum_{i \in Y} y_{v, i} & d=1 \\ \sum_{i \in Y} y_{v, i} \sum_{(v, w) \in E(G)} x_{v, w} \cdot T[w, d-1] & \text { otherwise }\end{cases}
$$

Once we have computed this table,

$$
P_{Y}(x, y)=\sum_{v \in V(G)} T[v, k]
$$

Then over all $Y \subseteq[k]$

$$
P(x, y)=\sum_{Y \subseteq[k]} P_{Y}(x, y)
$$

Summary: k-Path via Polynomials

Theorem

There is a randomized FPT algorithm for k-РATH running in time $2^{k} \cdot \operatorname{poly}(n)$.

Mainly time for evaluating the polynomial $P(x, y)$.

[^0]: ${ }^{1} \ell \geq k$, and we can always guess the smallest value of ℓ for which a Steiner Tree exists.

