ALL-PAIRS SHORTEST PATH IN A GRAPH

Partha P Chakrabarti

Indian Institute of Technology Kharagpur

Approaches to All-Pair Shortest Paths

Problem: Given a weighted directed Graph G = (V, E), find
the shortest (cost) path betwee of vertices in G.

Case 1: For Directed Acyclic Graphs), the recursive
Xte

algorithm discussed earlier can be e ded by computrn “]
the all-pair paths at every node during the recursio \@6 . .
W P{ﬁw 7 V‘ }L

Case 2: For Graphs with positive edge costs, we can ada
the single source algorithm to continue to find the shortest
path from s to all nodes (continue till OrQ is empty). We now
repeat that for all nodes as source nodes. ~——

Case 3: For Graphs which may have negative edges but no
negative edge cycles. We will discusstwo metiiods, namely,
Matrix Multiplication based method and the Floyd-Warshall

Aigorithm—————————— —

Case 4: For graphs which may also have negative edge
cycles, we will discuss the Bellman Ford Algorithm
L — - mm—

visited [i] indicates if node i is visited. / initially 0/
b cost[i] = cost of path fronf@o(l? initially infinity

succ(i) = {set of nodes to which node i is conne connected}
DFSP(node,g) {

local variabIeQaIue-oo) ‘VMCK Y
b visited[node] =4 W{ Mﬂ

wmel—-%
for each(jn succ(node) do {
if (visited [n] == 0) DFSP(N)A? ./

value = min (value, (cost[n] + C[node,n]) %\
} A 4l=l34——<'
(Costinode] = valued v~

return cost[node]; »~ \/

}
Time Com O (WS‘V (Wl\‘ ‘ﬁ>
Will not work for Graphs which have cycles.

—

Works for negative edge cost DAGs.
Can be adaptedto all pairs shortest paths for DAGs

(Exercise). {___,

BFSW(s,g) P
cost[s]=0 (:R:HED
T whie ora =NULLT

gjﬁ G

Modifying the Best First Search Algorlthm

G = (V,E) Assume positive edge costs/
visited][i] all initialized to 0

cost[j] cost fron(g tdj) all initialized to
Ordered Queue OrQ initially {}

j = Remove_Min (OrQ); viS|ted[|] 1;

;..\/

J

" For each k in succ (j) {
If (visited[k] == 0) {
if (cost[k] > (cost[j] + C[j,k])) {
—ycost[K] = cost[j] + C[j,k];
Insert_Reorder(OrQ,k);}

}
} I This method is called Dijkstra’s Algorithm /

OQV*@& o)

e

v

\)

v

10

1 2\/4\/; ~(5)
5 /\’\/‘
g (6)= 7

{1101}
2 {4[1], 2[2]}

3 {212), 33, 3(3], 7[5), 619}
4 (33], 53], 73], 6[9]}
5 {53, 7I5], 6[8]}

F

—
.never a node is removed
Removed
from OrQ, the best cost path
v 10 v to that node has been ~
v 41 v obtained. f’ ailed proof is
left as exercise)
v tB
~ 303 Complexity is O(|E| log |E|):\/
v thatis, O(|E| log |V|) using
v 5B - MinHeap or Tree.
v T8 May also be implemented by
an array in O(|V|? + |E|)

6 {7[5],6[8])
7 {6[6]}

<y

Bellman Ford Algorithm.~

visited [i] indicates if node i is visited. / initially 0/

cost[i] = cost of path from s to i, initially infinity ~

succ(i) = {set of nodes to which node i is connected}

Parent[i] are parent pointers of shortest path, initialized to NULL

Bellman Ford(s) { W Cin
cost[s] = 0; Qdﬁ\ ’b{(_{\)\{;’@ K C‘é‘-'i,{x
CHETTRID Y |
“For each edge (n,k) in E { N MYV
/’V if (cost[k] > (cost[n] + C[n,k])) { Cﬂ%
— cost[k] = cost[n] + C[nK]; 6%.1() v
Parent[k] =n };
1) ™~
For each edge (n,k) in E {
if (cost[k] > cost[n] + C[n,ﬂ) return (“Negative Cycle”) { 4/

} V4
return(“Success”)

Time Complexitrom s to all other nodes. /
Works for negativeedgecost graphs with negative edge loops.

For all-gairs, we run for each node as start node to get an{O(|E| * [VP
Algorithm.

—

s = Node 1 /

Example taken from the book “Introduction to
Algorithms” by Cormen, Leiserson, Rivest and Stein

Matrix Multiplication Based Method

RECURSIVE DEFINITION:

v

Y

forallmin

since CJ[j,j] = 0 for all j; -
Final Solution is D[i,j,n-1] where n = |V|
—

—

V oy
which is the same as: min { D[i,m,k/-‘l] + C[m,j]}

D[i,0] = 0 (if i =),)(if i 1=} '
D[i,j,k] = min { D[i,] -1],@{ D[i,m,k-1] + C[m.,j]}},
e i +Limil

NP o
\V

/%_rﬂyzingihe Recursive Definition we choose a
“Dynamic Programming $trategy using two 2-
dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme:
Oe,3,K] =dame () V7| 7
Wt deme. (-4 v

I

Bottom-up lterative Scheme: " V"
~ K = Lio (W\- 14—

— 1Y) e—
— T N6V Vv

Time Complexit

Matrix Multiplication Based Method: Example

/

D[0] pi1] o1 [m\/
0 oo co) oo 0 @ 8 oo - 3 8 2 -4 0 3 -3 2 -4
o0 oo | oo | oo @@ o0 @@ ‘E;j\ 0o |41 |7 3 o |41 |1
oo |00 |0 | oo | oo @ 4 @ oo | oo 4 o |5 |12 ||7 |4 |0 |5 |11
oo | oo | oo o0 @ oo | 5|0 | 150 |-2 2 |1 |50 |-2
0o | oo |00 |00 |0 @ v | |6 |0 ~ |1 |6 |0 8 |5 |1 |6 |o
B e o o] v 0]2,4,4] »
RECURSIVE DEFINITION SOAEIENE - Dt%i \1) CD) rj }G
: 3 |o |41 |
R A O
D[i,j,0] = 0 (if i =), (ifi I=}) v 7 14 (0|5 (3| O DEQ)Q")&’—&*
D[ij,k] = min { D[i,j,k-1], min { D[i,m,k-1] + C[mj[}}, > T2 (510 12
for all min |V| \/ 8 |5 |1 |6 |0

which is the same as: min { D[i,m,k-1] + C[m,j]}
since CJ[j,j] = 0; —
Final Solution is D[i,j@where n=|V| 4

D g
o\ e

Improved Matrix Multiplication Based Method

RECURSIVE DEFINITION
DI[i,j,1] = 0 if (i==

i’\ forallmin |V|

Final Solution is DJi,j,n-1] where n =

= C[i,j] if ('"J) AX’ f/
min { D[i,m(k] + D[m,j

V]

Analyzing the Recursive Definition we choose a
Dynamic Programming Strategy using Two 2-
dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme:

\/'

Bottom-up lterative Scheme:

P = 1 %0 193]

v
Time Complexity O(|V[® log [V]) time

Improved Matrix Multiplication Based Method: Example

oy v oz} ~ 2

0 |3 |8 || -4 0o (3 |8 |2 |4 o [1 |32 |4
© |0 | |1 |7 3 |o |4 |1 |7 3 (o |4 |1 (-1
o |4 |0 | | o o [4 [0 |5 |11 7 |4 |0 |5 [3
2 | |-5|0 [2 5 (o | -2 2 |1 |50 [-2
© | oo | o |6 [0 8 [|1 [6 |0 8 [5 |1 |6 |0

Example taken from the book “Introduction to

RECURSIVE DEFINITION: %

D[ij, 1] {0)if (i==i) O 4 @ﬁ)ﬁ
 _=CLTH(i=) X/ v

D[i,j(2k| = min { D[i,m,K] + Djm,j,K] }, for all m in |V K N
Final Solution is D[i,j,n-1] wheré n = |V| gﬁé) \e‘(\\\\\

Fond Warshall Algorithm

vz, % S
)= ok
50 Yom, b ®Y -

%W%ﬁ

\ v
RECURSIVE DEFINITION:

s i==j), and = (C[l,j])otherw \s@
(Huﬂ}mm H

Vv

Analyzing the Recursive Definition we choose a
Dynamic Programming Strategy using Two 2-
dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme: W
'/\/
F@)}g]“‘“ﬁ\‘:i b
EJLkA T
Y—i’éu &k*\ig

Ve

Bottom-up lterative Scheme

Time CompIeX|t

Floyd Warshall Algorithm: Exam

Jple
F[1] \/ FI2] FI3]
4 -4

Example taken from the book “Introduction to
Algorithms” by Cormen, Leiserson, Rivest and Stein

RECURSIVE DEFINITION:
F[i,j,0] = 0 if (i==j) and = C][i,j] otherwise \/
F[i,j,k] = min { F[i,j,k-1], F[i,k,k-1] + F[kj,k-1]}

F[0]
0 |3 |8 |]|-4]]|0 |3 4 ||lo |3 |8 o [3 |8 |4 |-a
oo |0 |eo |2 [7 [[ee |0 [0 |2 |7 [[ee |0 [e0o]|2 |7 [[oo]O |0 |1 |7
oo40oooooo40oooooo4o'@/11oo40511
zé)-sooozsso 5 |5 o [2]]2 |25 0 |-2
oo |00 |00 |6 [0 |[o [0 |0 |6 [0 [|oo o0 | |6 [0 ||| | |6 [0
Fl4] " FI5] v~
o |3 |-1|a |[-4]||0o |1 |3]|2 |-
3 |0 [-4 |1 | 3 |o |41 |
7 |a |o |5 |3 7 |4 |o |5 |3
2 |2 |s|o |22 |1]|s5 |0 |-2
8 |5 |1 |6 |0 8 |5 |1 |6 |0
—

Final Solution is F[i,j,n] where n = |V|

ol

%?‘3’/ oy “35“?“’“

Summary: All-Pair Shortest Paths

Case 1: For Directed Acyclic Graphs (DAGs), the Recursive DFS Algorithm discussed earlier
can easily be extended by computing the all-pair paths at every node.” O(|V|? + [V|*|E|) »~

Case 2: For Graphs with positive edge costs, we can adapt the single source Best First\/
Search (Dijkstra’s) Algorithm to continue to find the shortest path from s to all nodes
(Continue till OrQ is empty). We repeat that for all nodes as source nodes. O(|V|*(|[E| log |V]))

Case 3: For Graphs which may have negative edges but no negative edge cycles. We
discussed two methods, namely, W

Matrix Multiplication Based O(|V|* log |V|) and
Floyd-Warshall Algorithm O(|V]}) ~ X2~

Case 4: For graphs which may also have negative edge cycles, we discussed the Beliman
Ford Algorithm O(|E| * |V|?) X

Thank you

