Indian Institute of Technology Kharagpur

CS29003: Algorithms Laboratory, Spring 2022

Assignment 5: Dynamic Programming

General Instructions (to be followed strictly)

> Submit a single $C / C++$ source file.
> Do not use global variables unless you are explicitly instructed so.
> Do not use Standard Template Library (STL) of C++.
> Use proper indentation in your code and include comments.
> Name your file as 〈roll_no>_a5.<extn>
> Write your name, roll number, and assignment number at the beginning of your program.

Chef Rijo Dassarp has 5 different kinds of sauces $s_{1}, s_{2}, s_{3}, s_{4}, s_{5}$. Interestingly, mixing any two of the sauces yields one of the 5 sauces i.e., a sauce in the set $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right\}$. Two sauces $s_{i}, s_{j} \in S$ are mixed (in that order) as follows: s_{i} is heated in a saucepan; once it starts to boil s_{j} is stirred into it, resulting in some sauce $s_{k} \in S$. The mixture of s_{i} with s_{j} is written as $s_{i} s_{j}$. Mixing the same two sauces in the opposite order may result in a sauce different from s_{k}. Mixing a sauce s_{i} with itself would still yield s_{i}. Rijo knows the results of mixing all 25 possible pairs of sauces.

A particular sequence of sauces can be mixed in different ways. For example, $s_{2} s_{5} s_{1} s_{3}$ can be mixed in 5 different ways: $\left(\left(s_{2} s_{5}\right) s_{1}\right) s_{3},\left(s_{2}\left(s_{5} s_{1}\right)\right) s_{3}, s_{2}\left(\left(s_{5} s_{1}\right) s_{3}\right), s_{2}\left(s_{5}\left(s_{1} s_{3}\right)\right),\left(s_{2} s_{5}\right)\left(s_{1} s_{3}\right)$. Here, $\left(s_{2} s_{5}\right) s_{1}$ denotes the mixing of s_{2} with s_{5} and the resulting sauce being mixed with s_{1}. So the number of ways to mix a sequence (represented as a string over S) of sauces is the number of ways it can be paranthesised.

Rijo tests one of his apprentices, Inala Ono, by giving her a sequence/string of sauces $\sigma \in S^{*}$ to mix. He asks her to find out the number of different sauces that can be obtained by mixing σ and the number of mixings that result in each possible sauce. Your task is to help Inala by solving the problem for her.

- Write a function possible that takes as input $\ell \in\{1,2,3,4,5\}, \sigma \in S^{*}, M \in\{1,2,3,4,5\}^{5 \times 5}$. The 5×5 matrix M contains the results of mixing all possible pairs of sauces from S. The (i, j)-th entry of M is k if mixing $s_{i} s_{j}$ results in s_{k}. The function outputs 1 if s_{ℓ} can be obtained by mixing σ and 0 otherwise.
- Write a function countways that takes as input $\sigma \in S^{*}, M \in\{1,2,3,4,5\}^{5 \times 5}$ that for each $s_{i} \in S$, computes and prints the number of ways in which s_{i} can be obtained by mixing σ.

If $|\sigma|=n$, then both the functions must run in $O\left(n^{3}\right)$ time and use $O\left(n^{2}\right)$ space.
In the main() function, first read the 5×5 matrix M and then read the string σ as a sequence of indices from $\{1,2,3,4,5\}$. Call possible (i, σ, M) for each $i \in\{1,2,3,4,5\}$ and print whether or not it is possible to obtain s_{i} by mixing σ. Then call countways (σ, M) to print the number of ways each s_{i} can be obtained by mixing σ.

Sample Output

```
Enter M:
13434
5 2 5 3 1
25 3 1 2
3 1 5 4 1
42425
Enter string: 31442
1: Possible
2: Possible
3: Possible
4: Not Possible
5: Possible
Number of ways in which mixing 31442 results in
1: 1
2: 5
3: 3
4:0
5: 5
```

