Indian Institute of Technology Kharagpur
CS29003: Algorithms Laboratory, Spring 2022
Assignment 3: Divide-and-Conquer

General Instructions (to be followed strictly)

Submit a single C/C++ source file.
Do not use global variables unless you are explicitly instructed so.
Do not use Standard Template Library (STL) of C++.
Use proper indentation in your code and include comments.
Name your file as <roll_no>_a1.<extn>
Write your name, roll number, and assignment number at the beginning of your program.

CADDIT is an streaming media service that offers a wide range of movies. It tries to match your preferences of movies with those of other users in order to recommend movies to you. Suppose you rank n movies. CADDIT looks up in its database for users with 'similar' interests. Let $\mathbf{r}=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ and $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ be two rankings of the n movies. (These are just permutations of $1,2, \ldots, n$). Then distance between the two rankings $d(\mathbf{r}, \mathbf{s})$ is defined as the number of pairs (i, j) (with $1 \leq i<j \leq n$) such that either $\left(r_{i}<r_{j}\right) \wedge\left(s_{i}>2 s_{j}\right)$ or $\left(r_{i}>2 r_{j}\right) \wedge\left(s_{i}<s_{j}\right)$. By renaming one of the rankings, say, \mathbf{s} as $(1,2, \ldots, n)$, the problem of computing $d^{\prime}(\mathbf{r})$ defined as the number of pairs i, j such that $i<j$ and $r_{i}>2 r_{j}$.
(a) Write a function $d i s t_{1}$ that takes as input an array \mathbf{r} and computes $d^{\prime}(\mathbf{r})$ in $O\left(n^{2}\right)$ time, by looking at all pairs (i, j) and checking whether or not $r_{i}>2 r_{j}$.
(b) Write a function dist $_{2}$ implementing an $O(n \log n)$-time algorithm computing $d^{\prime}(\mathbf{r})$.

In the main() function, read n and the rankings \mathbf{r}. Call the two functions and print the corresponding distances computed. Assume that \mathbf{r} has the right form i.e., it is a permutation of $1,2, \ldots, n$.

```
Sample Output 1
n = 10
Ranking: 4 9 1 7 3 10 6 2 8 5
Distance by Method 1: 8
Distance by Method 2: 8
```

