Algorithmic Game Theory Practice Problems: Mechanism Design, Stable Matching

Palash Dey
Indian Institute of Technology, Kharagpur

November 3, 2022

1. (Inspired by an exercise from [Nar14]) Consider a scenario with a set [5] five sellers selling identical items with valuations $v_{1}=23, v_{2}=15, v_{3}=11, v_{4}=8, v_{5}=2$ and one buyer. Compute VCG payments in each of the following cases.
(i) The buyer wishes to buy 3 items and each seller can supply at most one items.
(ii) The buyer wishes to buy 3 items and each seller can sell at most 2 items.
(iii) The buyer wishes to buy 6 items and each seller can sell at most 2 items.
2. Prove that in a selfish load balancing game with 3 tasks and 2 identical machines, the PoA with respect to PSNE is 1.
3. Consider a stable matching instance with a set \mathcal{A} of \mathfrak{n} men and another set \mathcal{B} of n women. For each woman $w \in \mathcal{B}$, we define $h(w)$ to be the least preferred man $\mathfrak{m} \in \mathcal{A}$ by the woman w with whom she can be matched in some stable matching. A matching is called women-pessimal if every woman $w \in \mathcal{B}$ is matched with $h(w)$. Prove that the stable matching output by the men-proposal deferred acceptance algorithm is women-pessimal.
4. In a stable matching instance with sets \mathcal{A} and \mathcal{B} of n men and women, suppose \mathcal{M}_{1} and \mathcal{M}_{2} be two stable matchings. Define $\mathcal{M}_{3}=\left\{(a, b) \in \mathcal{A} \times \mathcal{B}: \mathcal{M}_{1}(a)=\mathcal{M}_{2}(a)=b\right.$ or $b=\mathcal{M}_{1}(a) \succ_{a} \mathcal{M}_{2}(a)$ or $b=$ $\left.\mathcal{M}_{2}(a) \succ_{a} \mathcal{M}_{1}(a)\right\}$; that is, in \mathcal{M}_{3}, every man $a \in \mathcal{A}$ gets his better partner between $\mathcal{M}_{1}(a)$ and $\mathcal{N}_{2}(a)$. Prove that \mathcal{M}_{3} is also a stable matching.

References

[Nar14] Y. Narahari. Game Theory and Mechanism Design. World Scientific Publishing Company Pte. Limited, 2014.

