Tutorial 4: CS21003 Algorithms I

Prof. Partha Pratim Chakrabarti and Palash Dey
Indian Institute of Technology, Kharagpur

February 11, 20201

1. Given two strings, $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ (having length n) and $Y=\left[y_{1}, y_{2}, \ldots, y_{m}\right]$ (having length \mathfrak{m}), the shortest common supersequence (SCS) is a minimum length string Z such that both X and Y are subsequences of Z. For example, if $X=$ [abcbdab] (length 7) and $Y=$ [bdcaba] (length 6), a SCS is $Z=$ [abdcabdab] (length 9). Your task is to find out the length of the SCS from two input strings of length n and m. Answer the following five parts:
(a) Provide a recursive definition to compute the length of the SCS as given in the problem statement.
(b) Develop a recursive algorithm translating the above definition, without declaring additional space. Also, derive the time-complexity of your algorithm in asymptotic Big-O notation.
(c) Improve this top-down recursive algorithm with the help of Memoization (using additional space).
(d) Now, propose an iterative (bottom-up) algorithm for the same problem. Also, provide the time and space complexity of your algorithm in asymptotic Big-O notation (give tight bounds).
(e) Clearly show the working steps of your proposed iterative bottom-up algorithm (above) in the given example strings, $\mathrm{X}=$ [abcbdab] and $\mathrm{Y}=$ [bdcaba].
2. Solve the Coins Problem by Dynamic Programming and memoization. Show the working on the example of $S=\{8,6,5,2,1\}$ and $\mathrm{V}=11$. Analyse the complexity of the Algorithm.
3. Solve the k-peg n-disk Tower of Hanoi Problem by Dynamic Programming to determine the optimal number of moves and present the top-down and bottom-up algorithms with memoization. Analyse the complexity of the algorithm. How will you find the actual minimum sequence of moves? Show how you will get the solution for $k=5$ and $n=7$.
