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Approaches to All-Pair Shortest Paths

Problem: Given a weighted directed Graph G = (V, E), find 

the shortest (cost) path between all pairs of vertices in G. 

Case 1: For Directed Acyclic Graphs (DAGs), the recursive 

algorithm discussed earlier can be extended by computing 

the all-pair paths at every node during the recursion.

Case 2: For Graphs with positive edge costs, we can adapt 

the single source algorithm to continue to find the shortest 

path from s to all nodes (continue till OrQ is empty). We now 

repeat that for all nodes as source nodes.

Case 3: For Graphs which may have negative edges but no 

negative edge cycles. We will discuss two methods, namely, 

Matrix Multiplication based method and the Floyd-Warshall

Algorithm

Case 4: For graphs which may also have negative edge 

cycles, we will discuss the Bellman Ford Algorithm



Modifying Shortest Cost Path Algorithm for DAGs
visited [i] indicates if node i is visited. / initially 0 / 

cost[i] = cost of path from i to g, initially infinity

succ(i) = {set of nodes to which node i is connected} 

DFSP(node,g) { 

local variable value = ∞;

visited[node] = 1; 
if (node == g) { cost[node] = 0; return 0}; 

for each n in succ(node) do {

if (visited [n] == 0) DFSP(n); 

value = min (value, (cost[n] + C[node,n]))

}

cost[node] = value;

return cost[node];   

}

Time Complexity O(|V| + |E|)

Will not work for Graphs which have cycles.

Works for negative edge cost DAGs. 

Can be adapted to all pairs shortest paths for DAGs 

(Exercise). 
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Modifying the Best First Search  Algorithm
G = (V,E) / Assume positive edge costs/

visited[i] all initialized to 0

cost[j] cost from s to j, all initialized to ∞ 
Ordered Queue OrQ initially {}

BFSW(s,g) {

cost [s] = 0; OrQ = {s}; 

While OrQ != NULL {

j = Remove_Min (OrQ); visited[j] = 1;

if (j == g) terminate with solution cost[j]; 

For each k in succ (j) {

If (visited[k] == 0) {    

if (cost[k] > (cost[j] + C[j,k])) {

cost[k] = cost[j] + C[j,k];

Insert_Reorder(OrQ,k);}

}

} }

If OrQ is empty terminate (“No Solution”);
} / This method is  called Dijkstra’s Algorithm /

Queue OrQ with node costs Node 

Removed 

1 {1[0]} 1 [0]

2 {4[1], 2[2]} 4 [1]

3 {2[2], 3[3], 5[3], 7[5], 6[9]} 2 [2]

4 {3[3], 5[3], 7[5], 6[9]} 3 [3]

5 {5[3], 7[5], 6[8]} 5 [3]

6 {7[5],6[8]) 7[5]

7 {6[6]} 6 [6]

Whenever a node is removed 

from OrQ, the best cost path 

to that node has been 

obtained. (Detailed proof is 

left as exercise)

Complexity is O(|E| log |E|), 

that is,  O(|E| log |V|) using 

MinHeap or Balanced Tree.

May also be implemented by 

an array in O(|V|2 + |E|)
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Bellman Ford Algorithm
visited [i] indicates if node i is visited. / initially 0 / 

cost[i] = cost of path from s to i, initially infinity

succ(i) = {set of nodes to which node i is connected}

Parent[i] are  parent pointers of shortest path, initialized to NULL 
Bellman Ford(s) {

cost[s] = 0; 

For i = 1 to |V| - 1 {

For each edge (n,k) in E {

if (cost[k] > (cost[n] + C[n,k])) {

cost[k] = cost[n] + C[n,k];

Parent[k] =n };

} }

For each edge (n,k) in E {

if (cost[k] > cost[n] + C[n,k]) return (“Negative Cycle”)
}

return(“Success”) 
}

Time Complexity O(|E|*|V|) from s to all other nodes.

Works for negative edge cost graphs with negative edge loops.

For all-pairs, we run for each node as start node to get an O(|E| * |V|2 ) 

Algorithm.

s = Node 1
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Algorithms” by Cormen, Leiserson, Rivest and Stein



Matrix Multiplication Based Method

RECURSIVE DEFINITION:

D[i,j,0] = 0 (if i = j), ∞ (if i != j)

D[i,j,k] = min { D[i,j,k-1], min { D[i,m,k-1] + C[m,j]}}, 

for all m in |V|

which is the same as:  min { D[i,m,k-1] + C[m,j]} 

since C[j,j] = 0 for all j;

Final Solution is D[i,j,n-1] where n = |V| 

Analyzing the Recursive Definition we choose a 

Dynamic Programming Strategy using two  2-

dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme:

Bottom-up Iterative Scheme: 

Time Complexity O(|V|4) time



Matrix Multiplication Based Method: Example

RECURSIVE DEFINITION:

D[i,j,0] = 0 (if i = j), ∞ (if i != j)

D[i,j,k] = min { D[i,j,k-1], min { D[i,m,k-1] + C[m,j]}}, 

for all m in |V|

which is the same as:  min { D[i,m,k-1] + C[m,j]} 

since C[j,j] = 0;

Final Solution is D[i,j,n-1] where n = |V| 
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Example taken from the book “Introduction to 
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Improved Matrix Multiplication Based Method

Analyzing the Recursive Definition we choose a 

Dynamic Programming Strategy using Two 2-

dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme:

Bottom-up Iterative Scheme: 

Time Complexity O(|V|3 log |V|) time

RECURSIVE DEFINITION:

D[i,j,1] = 0 if (i==j) 

= C[i,j] if (i!=j)

D[i,j,2k] = min { D[i,m,k] + D[m,j,k] }, 

for all m in |V|

Final Solution is D[i,j,n-1] where n = |V| 



Improved Matrix Multiplication Based Method: Example
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Example taken from the book “Introduction to 
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RECURSIVE DEFINITION:

D[i,j,1] = 0 if (i==j) 

= C[i,j] if (i!=j)

D[i,j,2k] = min { D[i,m,k] + D[m,j,k] }, for all m in |V|

Final Solution is D[i,j,n-1] where n = |V| 



Floyd Warshall Algorithm

RECURSIVE DEFINITION:

F[i,j,0] = 0 if (i==j), and =  C[i,j] otherwise

F[i,j,k] = min { F[i,j,k-1], F[i,k,k-1] + F[k,j,k-1]} 

Final Solution is F[i,j,n] where n = |V| 

Analyzing the Recursive Definition we choose a 

Dynamic Programming Strategy using Two 2-

dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme:

Bottom-up Iterative Scheme: 

Time Complexity O(|V|3) time



Floyd Warshall Algorithm: Example
0 3 8 ∞ -4

∞ 0 ∞ 1 7
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RECURSIVE DEFINITION:
F[i,j,0] = 0 if (i==j) and = C[i,j] otherwise
F[i,j,k] = min { F[i,j,k-1], F[i,k,k-1] + F[k,j,k-1]} 
Final Solution is F[i,j,n] where n = |V| 
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Summary: All-Pair Shortest Paths
Case 1: For Directed Acyclic Graphs (DAGs), the Recursive DFS Algorithm discussed earlier 

can easily be extended by computing the all-pair paths at every node. O(|V|2 + |V|*|E|)

Case 2: For Graphs with positive edge costs, we can adapt the single source Best First 

Search (Dijkstra’s) Algorithm to continue to find the shortest path from s to all nodes 

(Continue till OrQ is empty). We repeat that for all nodes as source nodes. O(|V|*(|E| log |V|)) 

Case 3: For Graphs which may have negative edges but no negative edge cycles. We 

discussed two methods, namely, 

Matrix Multiplication Based O(|V|3 log |V|) and 

Floyd-Warshall Algorithm O(|V|3) 

Case 4: For graphs which may also have negative edge cycles, we discussed the Bellman 

Ford Algorithm O(|E| * |V|2 ) 
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