
ALL-PAIRS SHORTEST PATH IN A GRAPH

Partha P Chakrabarti
Indian Institute of Technology Kharagpur

Approaches to All-Pair Shortest Paths

Problem: Given a weighted directed Graph G = (V, E), find

the shortest (cost) path between all pairs of vertices in G.

Case 1: For Directed Acyclic Graphs (DAGs), the recursive

algorithm discussed earlier can be extended by computing

the all-pair paths at every node during the recursion.

Case 2: For Graphs with positive edge costs, we can adapt

the single source algorithm to continue to find the shortest

path from s to all nodes (continue till OrQ is empty). We now

repeat that for all nodes as source nodes.

Case 3: For Graphs which may have negative edges but no

negative edge cycles. We will discuss two methods, namely,

Matrix Multiplication based method and the Floyd-Warshall

Algorithm

Case 4: For graphs which may also have negative edge

cycles, we will discuss the Bellman Ford Algorithm

Modifying Shortest Cost Path Algorithm for DAGs
visited [i] indicates if node i is visited. / initially 0 /

cost[i] = cost of path from i to g, initially infinity

succ(i) = {set of nodes to which node i is connected}

DFSP(node,g) {

local variable value = ∞;

visited[node] = 1;
if (node == g) { cost[node] = 0; return 0};

for each n in succ(node) do {

if (visited [n] == 0) DFSP(n);

value = min (value, (cost[n] + C[node,n]))

}

cost[node] = value;

return cost[node];

}

Time Complexity O(|V| + |E|)

Will not work for Graphs which have cycles.

Works for negative edge cost DAGs.

Can be adapted to all pairs shortest paths for DAGs

(Exercise).

0

3

4

8

11

12

11

1714

19

s

g

Modifying the Best First Search Algorithm
G = (V,E) / Assume positive edge costs/

visited[i] all initialized to 0

cost[j] cost from s to j, all initialized to ∞
Ordered Queue OrQ initially {}

BFSW(s,g) {

cost [s] = 0; OrQ = {s};

While OrQ != NULL {

j = Remove_Min (OrQ); visited[j] = 1;

if (j == g) terminate with solution cost[j];

For each k in succ (j) {

If (visited[k] == 0) {

if (cost[k] > (cost[j] + C[j,k])) {

cost[k] = cost[j] + C[j,k];

Insert_Reorder(OrQ,k);}

}

} }

If OrQ is empty terminate (“No Solution”);
} / This method is called Dijkstra’s Algorithm /

Queue OrQ with node costs Node

Removed

1 {1[0]} 1 [0]

2 {4[1], 2[2]} 4 [1]

3 {2[2], 3[3], 5[3], 7[5], 6[9]} 2 [2]

4 {3[3], 5[3], 7[5], 6[9]} 3 [3]

5 {5[3], 7[5], 6[8]} 5 [3]

6 {7[5],6[8]) 7[5]

7 {6[6]} 6 [6]

Whenever a node is removed

from OrQ, the best cost path

to that node has been

obtained. (Detailed proof is

left as exercise)

Complexity is O(|E| log |E|),

that is, O(|E| log |V|) using

MinHeap or Balanced Tree.

May also be implemented by

an array in O(|V|2 + |E|)

s

g

Bellman Ford Algorithm
visited [i] indicates if node i is visited. / initially 0 /

cost[i] = cost of path from s to i, initially infinity

succ(i) = {set of nodes to which node i is connected}

Parent[i] are parent pointers of shortest path, initialized to NULL
Bellman Ford(s) {

cost[s] = 0;

For i = 1 to |V| - 1 {

For each edge (n,k) in E {

if (cost[k] > (cost[n] + C[n,k])) {

cost[k] = cost[n] + C[n,k];

Parent[k] =n };

} }

For each edge (n,k) in E {

if (cost[k] > cost[n] + C[n,k]) return (“Negative Cycle”)
}

return(“Success”)
}

Time Complexity O(|E|*|V|) from s to all other nodes.

Works for negative edge cost graphs with negative edge loops.

For all-pairs, we run for each node as start node to get an O(|E| * |V|2)

Algorithm.

s = Node 1

0

∞

∞

∞ ∞

0

3

-3

-4 2

0

-4
2

-3

1

Example taken from the book “Introduction to
Algorithms” by Cormen, Leiserson, Rivest and Stein

Matrix Multiplication Based Method

RECURSIVE DEFINITION:

D[i,j,0] = 0 (if i = j), ∞ (if i != j)

D[i,j,k] = min { D[i,j,k-1], min { D[i,m,k-1] + C[m,j]}},

for all m in |V|

which is the same as: min { D[i,m,k-1] + C[m,j]}

since C[j,j] = 0 for all j;

Final Solution is D[i,j,n-1] where n = |V|

Analyzing the Recursive Definition we choose a

Dynamic Programming Strategy using two 2-

dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme:

Bottom-up Iterative Scheme:

Time Complexity O(|V|4) time

Matrix Multiplication Based Method: Example

RECURSIVE DEFINITION:

D[i,j,0] = 0 (if i = j), ∞ (if i != j)

D[i,j,k] = min { D[i,j,k-1], min { D[i,m,k-1] + C[m,j]}},

for all m in |V|

which is the same as: min { D[i,m,k-1] + C[m,j]}

since C[j,j] = 0;

Final Solution is D[i,j,n-1] where n = |V|

0 ∞ ∞ ∞ ∞

∞ 0 ∞ ∞ ∞

∞ ∞ 0 ∞ ∞

∞ ∞ ∞ 0 ∞

∞ ∞ ∞ ∞ 0

0 3 8 ∞ -4

∞ 0 ∞ 1 7

∞ 4 0 ∞ ∞

2 ∞ -5 0 ∞

∞ ∞ ∞ 6 0

0 3 8 2 -4

3 0 -4 1 7

∞ 4 0 5 11

2 -1 -5 0 -2

8 ∞ 1 6 0

0 3 -3 2 -4

3 0 -4 1 -1

7 4 0 5 11

2 -1 -5 0 -2

8 5 1 6 0

0 1 -3 2 -4

3 0 -4 1 -1

7 4 0 5 3

2 -1 -5 0 -2

8 5 1 6 0

Example taken from the book “Introduction to
Algorithms” by Cormen, Leiserson, Rivest and Stein

D[0] D[1] D[2] D[3]

D[4]

Improved Matrix Multiplication Based Method

Analyzing the Recursive Definition we choose a

Dynamic Programming Strategy using Two 2-

dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme:

Bottom-up Iterative Scheme:

Time Complexity O(|V|3 log |V|) time

RECURSIVE DEFINITION:

D[i,j,1] = 0 if (i==j)

= C[i,j] if (i!=j)

D[i,j,2k] = min { D[i,m,k] + D[m,j,k] },

for all m in |V|

Final Solution is D[i,j,n-1] where n = |V|

Improved Matrix Multiplication Based Method: Example

0 3 8 ∞ -4

∞ 0 ∞ 1 7

∞ 4 0 ∞ ∞

2 ∞ -5 0 ∞

∞ ∞ ∞ 6 0

0 3 8 2 -4

3 0 -4 1 7

∞ 4 0 5 11

2 -1 -5 0 -2

8 ∞ 1 6 0

0 1 -3 2 -4

3 0 -4 1 -1

7 4 0 5 3

2 -1 -5 0 -2

8 5 1 6 0

Example taken from the book “Introduction to
Algorithms” by Cormen, Leiserson, Rivest and Stein

D[1] D[2] D[4]

RECURSIVE DEFINITION:

D[i,j,1] = 0 if (i==j)

= C[i,j] if (i!=j)

D[i,j,2k] = min { D[i,m,k] + D[m,j,k] }, for all m in |V|

Final Solution is D[i,j,n-1] where n = |V|

Floyd Warshall Algorithm

RECURSIVE DEFINITION:

F[i,j,0] = 0 if (i==j), and = C[i,j] otherwise

F[i,j,k] = min { F[i,j,k-1], F[i,k,k-1] + F[k,j,k-1]}

Final Solution is F[i,j,n] where n = |V|

Analyzing the Recursive Definition we choose a

Dynamic Programming Strategy using Two 2-

dimensional arrays D[n,n] for Memoization:

Top Down Recursive Scheme:

Bottom-up Iterative Scheme:

Time Complexity O(|V|3) time

Floyd Warshall Algorithm: Example
0 3 8 ∞ -4

∞ 0 ∞ 1 7

∞ 4 0 ∞ ∞

2 ∞ -5 0 ∞

∞ ∞ ∞ 6 0

RECURSIVE DEFINITION:
F[i,j,0] = 0 if (i==j) and = C[i,j] otherwise
F[i,j,k] = min { F[i,j,k-1], F[i,k,k-1] + F[k,j,k-1]}
Final Solution is F[i,j,n] where n = |V|

0 3 8 ∞ -4

∞ 0 ∞ 1 7

∞ 4 0 ∞ ∞

2 5 -5 0 -2

∞ ∞ ∞ 6 0

0 1 -3 2 -4

3 0 -4 1 -1

7 4 0 5 3

2 -1 -5 0 -2

8 5 1 6 0

F[0] F[1] F[2] F[3]

F[4] F[5]Example taken from the book “Introduction to
Algorithms” by Cormen, Leiserson, Rivest and Stein

0 3 8 4 -4

∞ 0 ∞ 1 7

∞ 4 0 5 11

2 5 -5 0 -2

∞ ∞ ∞ 6 0

0 3 8 4 -4

∞ 0 ∞ 1 7

∞ 4 0 5 11

2 -1 -5 0 -2

∞ ∞ ∞ 6 0

0 3 -1 4 -4

3 0 -4 1 -1

7 4 0 5 3

2 -1 -5 0 -2

8 5 1 6 0

Summary: All-Pair Shortest Paths
Case 1: For Directed Acyclic Graphs (DAGs), the Recursive DFS Algorithm discussed earlier

can easily be extended by computing the all-pair paths at every node. O(|V|2 + |V|*|E|)

Case 2: For Graphs with positive edge costs, we can adapt the single source Best First

Search (Dijkstra’s) Algorithm to continue to find the shortest path from s to all nodes

(Continue till OrQ is empty). We repeat that for all nodes as source nodes. O(|V|*(|E| log |V|))

Case 3: For Graphs which may have negative edges but no negative edge cycles. We

discussed two methods, namely,

Matrix Multiplication Based O(|V|3 log |V|) and

Floyd-Warshall Algorithm O(|V|3)

Case 4: For graphs which may also have negative edge cycles, we discussed the Bellman

Ford Algorithm O(|E| * |V|2)

Thank you

