All-Pairs Shortest Path In A Graph

Partha P Chakrabarti
Indian Institute of Technology Kharagpur

Approaches to All-Pair Shortest Paths

Problem: Given a weighted directed Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, find the shortest (cost) path between all pairs) of vertices in G.

Case 1: For Directed Acyclic Graphs (DAGs), the recursive algorithm discussed earlier can be extended by computingy the all-pair paths at every node during the recursion.

Case 2: For Graphs with positive edge costs, we can adapt
 path from sto all nodes (continue till OrQ is empty). We now repeat that for all nodes as source nodes.

Case 3: For Graphs which may have negative edges but no negative edge cycles. We will discuss two method's, namely, Matrix Multiplication based method and the Floyd-Warshall Algorithm \qquad -

Case 4: For graphs which may also have negative edge cycles, we will discuss the Bellman Ford Algorithm

Modifying Shortest Cost Path Algorithm for DAGs

$$
\text { contanabion }=\alpha \text { if coifs oifćc. }
$$

visited [i] indicates if node i is visited. I initially 0 I
cost [i] = cost of path front ito'g initially infinity
$\operatorname{succ}(i)=\{$ set of nodes to which node i is connected $\}$
DFSP(node,g) \{
local variable value $=\infty$; $\quad \operatorname{valuc}[1]=\alpha$

 \}
Time Complexity $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}| \mid) \quad O(\mid V)+\ldots(|V|+|E|)$ Will not work for Graphs which have cycles.
Works for negative edge cost DAGs.
Can be adapted to all pairs shortest paths for DAGs (Exercise). \qquad

Modifying the Best First Search Algorithm

Whenever a node is removed from OrQ, the best cost path to that node has been obtained. (Detailed proof is Teft as exercise)

Complexity is $\mathrm{O}(|\mathrm{E}| \log |\mathrm{E}|)$; that is, $O(|E| \log |V|)$ using MinHeap or Baianced Tree. May also be implemented by an array in $\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right)$

Bellman Ford Algorithm

For each edge (n, k) in $E\{$

For
\{

return("Success")

)
Time Complexity $\mathrm{O}\left(|\mathrm{E}|^{*}|\mathrm{~V}|\right)$) from s to all other nodes.
Works for negative edge cost graphs with negative edge loops.

Example taken from the book "Introduction to Algorithms" by Cormen, Leiserson, Livest and Stein

Matrix Multiplication Based Method

Analyzing the Recursive Definition we choose a Dynamic Programming Strategy using two 2dimensional arrays D[n,n] for Memoization:
Top Down Recursive Scheme:

Bottom-up Iterative Scheme:
$\rightarrow K=1$ to $(V-1 \leftarrow$

Time Complexity $\mathrm{O}\left(|\mathrm{V}|^{4}\right)$ time

Matrix Multiplication Based Method: Example

Improved Matrix Multiplication Based Method

RECURSIVE DEFINITION:

$D[i, j, 1]=0$ if $(i==j)$
$\sim=C[i, j]$ if $(i!=j)$
$D[i, j, 2 k]=\min \{D[i, m, k]+D[m, j k\}$, for all m in $|V|$
Final Solution is $\mathrm{D}[\mathrm{i}, \mathrm{j}, \mathrm{n}-1]$ where $\mathrm{n}=|\mathrm{V}|$

Analyzing the Recursive Definition we choose a Dynamic Programming Strategy using Two 2dimensional arrays $D[n, n]$ for Memorization:
Top Down Recursive Scheme:

Bottom-up Iterative Scheme:

Time Complexity $\mathrm{O}\left(|\mathrm{V}|^{3} \log |\mathrm{~V}|\right)$ time

Improved Matrix Multiplication Based Method: Example

0	3	8	∞	-4
∞	0	∞	1	7
∞	4	0	∞	∞
2	∞	-5	0	∞
∞	∞	∞	6	0

D[4]

0	3	8	2	-4
3	0	-4	1	7
∞	4	0	5	11
2	-1	-5	0	-2
8	∞	1	6	0

0	1	-3	2	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0

Example taken from the book "Introduction to
Algorithms" by Cormen, Leiserson, Revest and Stein

RECURSIVE DEFINITION:

D[i,j, 1$]=$ O 0 if $(i==j$ j
$=C[i, j]$ if $(i:=j)$
$D\left[i, \int 2 k\right]=\min \{D[i, m, k]+D[m, j, k]\}$, for all m in $|V|$
Final Solution is $\mathrm{D}[\mathrm{i}, \mathrm{j}, \mathrm{n}-1]$ where $\mathrm{n}=|\mathrm{V}|$

Floyd Warshall Algorithm

Analyzing the Recursive Definition we choose a Dynamic Programming Strategy using Two 2dimensional arrays $\mathrm{D}[\mathrm{n}, \mathrm{n}]$ for Memorization:
Top Down Recursive Scheme:

Bottom -up Iterative Scheme:

RECURSIVE DEFINITION:
$F[i, j, 0]=(0)$ if $(i==j)$, and $=C[i, j])$ otherwise $F[i, j, k]=\min \{F[i(k-1 i, j[i, k, k-1]+F[k, j, k-1]\}$

$$
\begin{aligned}
& F[i, k, k-1]+ \\
& F[k j, k+
\end{aligned}
$$ Final Solution is $F[i, j, n]$ where $n=|V|$

Time Complexity $\mathrm{O}\left(|\mathbf{V}|^{3}\right)$ time

Floyd Warshall Algorithm: Example

Example taken from the book "Introduction to
Algorithms" by Cormen, Leiserson, Rivest and Stein

RECURSIVE DEFINITION:

$\mathrm{F}[\mathrm{i}, \mathrm{j}, 0]=0$ if $(\mathrm{i}=\mathrm{j} \mathrm{j})$ and $=\mathrm{C}[\mathrm{i}, \mathrm{j}]$ otherwise
$F[i, j, k]=\min \{F[i, j, k-1], F[i, k, k-1]+F[k, j, k-1]\}$
Final Solution is $\mathrm{F}[\mathrm{i}, \mathrm{j}, \mathrm{n}]$ where $\mathrm{n}=|\mathrm{V}|$

0	3	-1	4	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0

$\mathrm{F}[5]$				
0	1	-3	2	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0

$F\left[L_{j}, k\right]=\cos 2$ of min cost path Thru nodes $\{1, . . k\}$

Summary: All-Pair Shortest Paths

Case 1: For Directed Acyclic Graphs (DAGs), the Recursive DFS Algorithm discussed earlier can easily be extended by computing the all-pair paths at every node. $0\left(|\mathrm{~V}|^{2}+|\mathrm{V}|^{*}|E|\right)$

Case 2: For Graphs with positive edge costs, we can adapt the single source Best First Search (Dijkstra's) Algorithm to continue to find the shortest path from s to all nodes (Continue till OrQ is empty). We repeat that for all nodes as source nodes. $\mathrm{O}\left(|\mathrm{V}|^{*}(|\mathrm{E}| \log |\mathrm{V}|)\right)$

Case 3: For Graphs which may have negative edges but no negative edge cycles. We discussed two methods, namely,
Matrix Multiplication Based $\mathrm{O}\left(|\mathrm{V}|^{3} \log |\mathrm{~V}|\right)$ and
Floyd-Warshall Algorithm $\mathbf{O}\left(|\mathrm{V}|^{3}\right)$

Case 4: For graphs which may also have negative edge cycles, we discussed the Bellman Ford Algorithm $\mathrm{O}\left(|\mathrm{E}|{ }^{*}|\mathrm{~V}|^{2}\right)$

Thank you

