ALL-PAIRS SHORTEST PATH IN A GRAPH

Partha P Chakrabarti Indian Institute of Technology Kharagpur

Approaches to All-Pair Shortest Paths

<u>Problem</u>: Given a weighted directed Graph G = (V, E), find the shortest (cost) path between all pairs of vertices in G.

Case 1: For Directed Acyclic Graphs (DAGs), the recursive algorithm discussed earlier can be extended by computing the all-pair paths at every node during the recursion.

<u>Case 2</u>: For Graphs with positive edge costs, we can adapt the single source algorithm to continue to find the shortest path from s to all nodes (continue till OrQ is empty). We now repeat that for all nodes as source nodes.

<u>Case 3</u>: For Graphs which may have negative edges but no negative edge cycles. We will discuss two methods, namely, Matrix Multiplication based method and the Floyd-Warshall Algorithm

<u>Case 4</u>: For graphs which may also have negative edge cycles, we will discuss the Bellman Ford Algorithm

Modifying Shortest Cost Path Algorithm for DAGs

Modifying the Best First Search Algorithm

Bellman Ford Algorithm

Example taken from the book "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein

Matrix Multiplication Based Method

Matrix Multiplication Based Method: Example

Improved Matrix Multiplication Based Method

Improved Matrix Multiplication Based Method: Example

	D	•		
0	3	8	8	-4
8	0	8	1	7
8	4	0	8	8
2	8	-5	0	8
8	8	8	6	0

0	3	8	2	-4
3	0	-4	1	7
8	4	0	5	11
2	-1	-5	0	-2
8	8	1	6	0

0	1	-3	2	-4				
3	0	-4	1	-1				
7	4	0	5	3				
2	-1	-5	0	-2				
8	5	1	6	0				

[4]

Example taken from the book "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein

RECURSIVE DEFINITION: D[i,j,1] = 0 if (i==j) = C[i,j] if (i!=j) $D[i,j,2k] = \min \{ D[i,m,k] + D[m,j,k] \}, \text{ for all } m \text{ in } |V|$ Final Solution is D[i,j,n-1] where n = |V|

Floyd Warshall Algorithm

Floyd Warshall Algorithm: Example

Example taken from the book "Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein

RECURSIVE DEFINITION:

F[i,j,0] = 0 if (i==j) and = C[i,j] otherwise \checkmark

F[i,j,k] = min { F[i,j,k-1], F[i,k,k-1] + F[k,j,k-1]} Final Solution is F[i,j,n] where n = |V| F[4]

[ijk] = cost of min costpath Three modes SI.... K?

Summary: All-Pair Shortest Paths

<u>Case 1</u>: For Directed Acyclic Graphs (DAGs), the <u>Recursive DFS Algorithm</u> discussed earlier can easily be extended by computing the all-pair paths at every node. $O(|V|^2 + |V|^*|E|)$

<u>Case 2</u>: For Graphs with positive edge costs, we can adapt the single source **Best First** Search (Dijkstra's) Algorithm to continue to find the shortest path from s to all nodes (Continue till OrQ is empty). We repeat that for all nodes as source nodes. O(|V|*(|E| log |V|))

<u>Case 3</u>: For Graphs which may have negative edges but no negative edge cycles. We discussed two methods, namely, Matrix Multiplication Based O(|V|³ log |V|) and

Floyd-Warshall Algorithm O(|V|³)

<u>Case 4</u>: For graphs which may also have negative edge cycles, we discussed the Bellman Ford Algorithm $O(|E| * |V|^2)$

Thank you