Shortest Path In A Graph

Partha P Chakrabarti

Indian Institute of Technology Kharagpur

Shortest Path in a Graph

Problem: Given an directed Graph G = (V, E), and two nodes, s and g in V, find a shortest (cost) path from s to g in V .
In unweighted graphs edge cost is 1 . Thus shortest path is the path length.
In Fig 1, if $s=A, g=G$, Shortest Path $=\{A, B, D, G\}$ and Cost $=$ Length is 3 .
The cost of a path is measured in terms of the sum of the edge costs of the path from s to g.
In Fig 2, if $s=1, g=6$, Shortest Cost Path $=\{1,4,7,6\}$ where Length is 3 and cost is 6 . There is a shorter length path $\{1,4,6\}$ but of higher cost (9).
For undirected graphs, we replace an undirected edge $e=(m, n)$ by two directed edges $e 1 \leq(m, n)$ and $\mathrm{e} 2=(\mathrm{n}, \mathrm{m})$ of the same weight ase to get a directed graph.
The graph may have cycles or may be a Directed Acyclic Graph (DAG)

Depth-First Search

Global Data: G = (V,E)
visited [i] indicates if node i is visited. I initially 0 I
Parent[i] = parent of a node in the Search / initially NULL / $\operatorname{succ}(\mathrm{i})=\{$ set of nodes to which node i is connected $\}$ PathDfs(s,g) \{
visited[s] = 1;
if ($s==g$) return with path through parent links;
for each n in succ(s) do
if (visited [n] == 0)
$\{$ Parent[n] = s;
PathDfs(n,g) \}
\}
Time Complexity $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
II The first solution in DFS may not be the shortest path. If you wish to find the shortest path using DFS then you may need to backtrack and handle loops in the graph (Home Exercise) II

Breadth-First Search

Length [k] gives the length of the shortest path from s to k.

When a goal node is removed from the Queue Q , the shortest length path to it is found.

The Algorithm, will work in case there are multiple nodes which satisfy the goal condition and we are to find a path to any one of them

Shortest Paths Weighted Directed Graphs

Varieties of Shortest Path Problems:
Source-Goal Problem $\sqrt{ } /, 8$
Single Source - All Nodes Problem S
All Pairs Shortest Paths

Types of Graphs:
Directed Acyclic Graphs (DAGs) [Fig 1]
General Graphs with positive edge costs [Fig 2]

Shortest Cost Path in DAGs

visited [i] indicates if node i is visited. / initially 0 / $\operatorname{cost}[i]=$ cost of path from i to g, initially (infinity) $\operatorname{succ}(i)=\{$ set of nodes to which node i is connected $\}$
DFSP(node,g) \{
local variable value $=\infty$;
visited[node] $=1 ; \mathrm{N}$
if (node $==\mathrm{g}$) $\{$ cost[node] $=0$; return 0\};
for each n in succ(node) do \{
t
if (visited [n] == 0) DFSP(n);
value $=\min ($ value, $(\operatorname{cost}[n]+C[$ node, $n])$)
$\} \quad-\quad T$
cost[node] = value;
return cost[node];
\}
Time Complexity $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
Will not work for Graphs which have cycles.
Works for negative edge cost DAGs. $~$
Can be adapted to all pairs shortest paths for DAGs
(Exercise).

Best First Search in Weighted Directed Graphs

Thank you

Homework Exercise:

Algorithm for Shortest Path in a weighted Graph with negative edge costs but no negative cycles

