
Indian Institute of Technology Kharagpur

CS29003: Algorithms Laboratory, Spring 2021

Assignment 2: Recursive Formulation of Algorithms

2PM – 5PM 19th January, 2021

General Instructions (to be followed strictly)

Submit a single C/C++ source file.
Do not use global variables unless you are explicitly instructed so.

Do not use Standard Template Library (STL) of C++.
Use proper indentation in your code and comment.

Name your file as <roll_no>_<assignment_no>.

Write your name, roll number, and assignment number at the beginning of your program.

Consider the following model for an election. There are p parties, each represented by a candidate. The
winning party is decided by simple majority. That is, a party with strictly more than 50% of the votes wins.
A winning party, if at all it exists, can form the government. It is possible that no single party wins the
election. In that case, 2 or more parties whose vote shares together add up to more than 50% of the votes,
can form an alliance/coalition government.

Your task for this assignment is as follows. Read the number of voters v and the number of parties p from
the user. Both v and p are positive integers. Let the parties be labelled 1, 2, . . . , p. Also input a coalition
C ⊆ {1, 2, . . . , p} (this could also be a singleton set). Generate all possible distributions of v votes amongst
the p parties. For each distribution, check whether or not it is a winning distribution for the given coalition
C. Print only the winning distributions of votes for C, each followed by the total number of votes obtained
by the coalition. (Note that votes are indistinguishable, that is, the order of the votes or who votes for which
party does not matter here; only the number of votes per party does.)

(a) Think of a data structure to store each distribution of votes. You may consider using character array.

(b) Write a function vote dist that recursively generates all vote distributions. Here is one possible recursive
formulation: we distribute the votes to parties 1, 2, . . . , p starting from the left. For the first vote, there
are two choices – either it goes to party 1 or party 2. In the first case, we recursively count the number
of ways to ditributet v − 1 votes amongst p parties and in the latter case, we count number of ways
to distribute v votes amongst the remaining p − 1 parties. This strategy will generate all possible
distributions. More precisely, suppose that iv votes have been distributed so far among the first ip
parties. Here, ip ∈ {1, 2, . . . , p−1} and at this point some or all of first ip may not have any votes at all.
The (iv +1)-th vote either goes to party ip or to party ip +1. In both cases, call the function recursively
with the variables keeping track of iv and ip appropriately updated. Decide on an appropriate prototype
for the function.

(c) Write a function print that given a string or any other data structure representing a vote distribution,
decides whether or not it is a winning distribution for the coalition C and if so, prints the number of
votes for each party followed by the total number of votes for the coalition.

In the main() function,

• Read v, p from the user. Assume (and ensure) that v ≤ 30 and p ≤ 10.

• Read the coalition as a subset of {1, 2, . . . , p} – the user enters numbers present in the subset one by
one and then enters -1 to indicate end of the subset.

• Call vote dist with the required parameters.

1



Note that the function print should be called from within vote dist whenever you reach the terminating case
for the recursion.

Sample Output 1

#Voters: 7

#Parties: 3

Coalition:

1

3

-1

1: 7 2: 0 3: 0 Total votes for the coalition: 7

1: 6 2: 1 3: 0 Total votes for the coalition: 6

1: 6 2: 0 3: 1 Total votes for the coalition: 7

1: 5 2: 2 3: 0 Total votes for the coalition: 5

1: 5 2: 1 3: 1 Total votes for the coalition: 6

1: 5 2: 0 3: 2 Total votes for the coalition: 7

1: 4 2: 3 3: 0 Total votes for the coalition: 4

1: 4 2: 2 3: 1 Total votes for the coalition: 5

1: 4 2: 1 3: 2 Total votes for the coalition: 6

1: 4 2: 0 3: 3 Total votes for the coalition: 7

1: 3 2: 3 3: 1 Total votes for the coalition: 4

1: 3 2: 2 3: 2 Total votes for the coalition: 5

1: 3 2: 1 3: 3 Total votes for the coalition: 6

1: 3 2: 0 3: 4 Total votes for the coalition: 7

1: 2 2: 3 3: 2 Total votes for the coalition: 4

1: 2 2: 2 3: 3 Total votes for the coalition: 5

1: 2 2: 1 3: 4 Total votes for the coalition: 6

1: 2 2: 0 3: 5 Total votes for the coalition: 7

1: 1 2: 3 3: 3 Total votes for the coalition: 4

1: 1 2: 2 3: 4 Total votes for the coalition: 5

1: 1 2: 1 3: 5 Total votes for the coalition: 6

1: 1 2: 0 3: 6 Total votes for the coalition: 7

1: 0 2: 3 3: 4 Total votes for the coalition: 4

1: 0 2: 2 3: 5 Total votes for the coalition: 5

1: 0 2: 1 3: 6 Total votes for the coalition: 6

1: 0 2: 0 3: 7 Total votes for the coalition: 7

2


