Part 1

Let d be the last digit (from right) of your roll number. Suppose we have 3 buyers who want to buy 2 goods A and B. Each good can be allocated to any buyer independent of the other good. Their valuations are as follows.

Bundle	ν_1	v_2	v ₃
Ø	0	0	0
{A}	d + 1	d	d + 1
{B}	d + 2	d + 3	d + 2
$\{A, B\}$	d + 3	d + 3	d+4

[10 Marks]

Suppose we have d = 5. Then we have the following valuations. An allocatively efficient allocation

Bundle	ν_1	v_2	v_3
Ø	0	0	0
{A}	6	5	6
$\{B\}$	7	8	7
$\{A, B\}$	8	8	9

is to give A to player 1 and B to player 2. The VCG payment of the players is as follows. Payment of player 1 = (-6 - 8) - (-6 - 8) = 0. Payment of player 2 = (-6 - 8) - (-6 - 7) = -1. Payment of player 1 = (-6 - 8) - (-6 - 8) = 0.

Part 2

Prove or disprove:

1. The number of iterations that the men proposing deferred acceptance algorithm takes on an instance of the stable marriage problem is independent of how/which unmatched man we pick in an iteration.

We observe that the number of iterations in the men-proposing deferred acceptance algorithm is the total number of rejections plus the number of men. Since the output of the menproposing deferred acceptance algorithm is the men-optimal stable matching, the number of rejections in any run of the men-proposing deferred acceptance algorithm is the same.

2. The output of the men-proposing deferred acceptance algorithm is woman-pessimal. That is, there does not exist any other stable matching where a woman is matched with a man whom she prefers less than her partner in the output of the men-proposing deferred acceptance algorithm.

Similar to the way we proved that the output of the men-proposing deferred acceptance algorithm is men-optimal.

[5+5 Marks]