Assignment 4: Randomized Algorithm Design

Palash Dey Indian Institute of Technology, Kharagpur

April 27, 2020

- 1. Let C_n be a cycle on a set \mathcal{V} of n vertices and \mathcal{T} be a tree which is an embedding of C_n . Then prove that there exists an edge $\{u,v\} \in \mathcal{E}[C_n]$ such that the distance between u and v in \mathcal{T} is n-1.
- 2. If $Z_i, i \in \mathbb{N}$ is a martingale with respect to $X_i, i \in \mathbb{N}$, then prove that $Z_i, i \in \mathbb{N}$ is a martingale with respect to itself also.
- 3. Let $X_0=0$ and X_{j+1} is distributed uniformly over $[X_j,1]$. Show that, for $k\geqslant 0$, the sequence

$$Y_k = 2^k (1 - X_k)$$

is a martingale.

- 4. Alice and Bob play each other in a checkers tournament, where the first player to win four games wins the match. The players are evenly matched, so the probability that each player wins each game is $\frac{1}{2}$, independent of all other games. The number of minutes for each game is uniformly distributed over the integers in the range [30, 60], again independent of other games. What is the expected time they spend playing the match?
- 5. Consider an urn that initially contains b black balls and w white balls. At every iteration, we draw a random ball is chosen and the chosen ball is replaced by c>1 balls of the same color. Let X_i denote the fraction of black balls after i-th draw. Prove that X_0, X_1, \ldots is a martingale.