Assignment 3: Randomized Algorithm Design

Palash Dey Indian Institute of Technology, Kharagpur

April 2, 2020

- 1. A set family $\mathfrak{F}\in 2^{[n]}$ is called *intersecting* if, for every $\mathcal{A}, \mathcal{B}\in \mathfrak{F}$, we have $\mathcal{A}\cap \mathcal{B}\neq \emptyset$. Let \mathfrak{F} be an intersecting family of subsets of cardinality k of [n]. Then prove that $|\mathfrak{F}|\leqslant {n-1\choose k-1}$. This is known as the Erdős-Ko-Rado Theorem or the sunflower theorem.
- 2. Prove that any graph has a bipartite sub-graph containing at least half the total number of edges.
- 3. The chromatic number $\chi(G)$ of a graph G is the minimum number of colors needed to color its vertices. The girth g(G) is the length of the shortest cycle in the graph G (if there is no cycle, then the girth is -1). Prove that, for any $k, \ell > 0$ there exists a graph with $\chi(G) > k$ as well as $g(G) > \ell$.
- 4. A family \mathcal{F} of subsets of $\{1, 2, ..., n\}$ is called an anti-chain if, for no pair of sets $A, B \in \mathcal{F}$, we have $A \subseteq B$.
 - (a) Give an example of \mathcal{F} with $\mathcal{F} = \binom{n}{\lfloor n/2 \rfloor}$.
 - (b) Let f_k denote the number of sets in $\mathcal F$ of cardinality k. Then prove

$$\sum_{k=0}^{n} \frac{f_k}{\binom{n}{k}} \leqslant 1$$

- (c) Prove that $|\mathcal{F}| \leqslant \binom{n}{\lfloor n/2 \rfloor}$ for any anti-chain \mathcal{F} .
- 5. An hypergraph is a tuple $(\mathcal{V},\mathcal{E})$ where \mathcal{V} is the set of vertices and \mathcal{E} is the set of hyperedges. An hyperedge $e \subseteq \mathcal{V}$ is some subset of vertices. A coloring of a hypergraph gives colors to its vertices such that no hyper edge sees vertices of exactly one color. Prove that, in a hypergraph \mathcal{H} , if every edge has at least k vertices, every edge intersects with at most d other edges, and $e(d+1) \leqslant 2^{k-1}$, then \mathcal{H} is 2 colorable. (Hint: use Lovász local lemma)
- 6. Let $\mathcal{D} = (\mathcal{V}, \mathcal{A})$ is a directed graph with minimum outdegree δ and maximum indegree Δ . Prove (using Lovász local lemma) that, if $k \leqslant \frac{\delta}{1 + \ln(1 + \delta \Delta)}$, then \mathcal{D} contains a directed cycle of length divisible by k.
- 7. The randomized algorithm of assigning every vertex to one of the two sets A and B with equal probability provides a ½ factor approximation for the maximum cut problem for weighted undirected graphs. Use method of conditional expectation to de-randomize this algorithm.
- 8. Give an example of a 2 universal hash family which is not 3 universal.
- 9. In the standard balls and bins setting, we have seen that if n balls are thrown into n bins uniformly at random, then the maximum load is at most $2\ln n/\ln n$ with probability at least 1-1/n. Suppose, we use a hash function picked u.a.r from a k-universal hash family to throw balls into bins. Show that, for k=2, the maximum load is at most $\sqrt{2n}$ with probability at least 1/2. Find the smallest value of k such that the maximum load is at most $2\ln n/\ln n$ with probability at least 1/2.