Assignment 1: Randomized Algorithm Design

Palash Dey
Indian Institute of Technology, Kharagpur

January 20, 2020

[^0]1. Let $X_{i}, i \in[n]$ be n random variables each with finite support. Then prove the following.

$$
\operatorname{var}\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} \operatorname{var}\left(x_{i}\right)+2 \sum_{1 \leqslant i<j \leqslant n} \operatorname{cov}\left(x_{i}, x_{j}\right)
$$

where for any two random variables \mathcal{X} and y, we define $\operatorname{cov}(X, y)=\mathbb{E}[X y]-\mathbb{E}[X] \mathbb{E}[y]$.
2. Let X and y be two independent random variables. Then prove that $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[y]$. From this conclude that, for n pairwise random variables $\mathcal{X}_{i}, i \in[n]$, we have the following.

$$
\operatorname{var}\left(\sum_{i=1}^{n} x_{i}\right)=\sum_{i=1}^{n} \operatorname{var}\left(x_{i}\right)
$$

3. Fix any input sequence of n integers to the quick sort algorithm. Let X be the random variable denoting the number of comparisons the the quick sort algorithm makes on the input sequence. Then prove that $\operatorname{var}(X)=\mathcal{O}\left(n^{2}\right)$.
4. Let $A_{i}, i \in[n]$ be n objects each having two attributes A_{i}^{x} and A_{i}^{y}. The attribute y is 0 for every A_{i}. Suppose we have a deterministic quick sort algorithm that can sort $A_{i}, i \in[n]$ on the attribute x or on the attribute y. Can you use this deterministic quick sort algorithm to design a randomized algorithm to sort $\mathcal{A}_{i}, i \in[n]$ on the attribute x which makes an expected $\mathcal{O}(n \log n)$ comparisons? Please prove that your algorithm indeed makes $\mathcal{O}(n \log n)$ comparisons on expectation.
5. Let $X_{i}, i \in[n]$ be n pairwise independent random variables each taking values in $\{0,1\}$ with expectation μ and $\mathcal{S}=\sum_{i=1}^{n} X_{i}$. Then for any positive real number δ we have the following.

$$
\operatorname{Pr}[\mathcal{S} \leqslant(1-\delta) \mu] \leqslant\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}
$$

6. Show that the expected number of balls one needs to through randomly into m bins to have every bin at least one ball is $\mathcal{O}(\mathrm{m} \log \mathrm{m})$.
7. Give an example of a random variable whose expectation exists but variance does not exist.
8. Find the expectation and variance of the number of swaps that the bubble sort algorithm performs on a uniformly random permutation of n distinct integers.
9. Prove the weak law of large numbers using Chebyshev inequality. The weak law of large number states that, for random variables $X_{i}, i \in \mathbb{N}$ which are distributes independently and identically with mean μ and variance σ^{2}, we have the following for any constant $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}-\mu\right|>\varepsilon\right]=0
$$

10. Let $X_{i}, i \in[n]$ be n pairwise independent random variables each taking values in $\{0,2\}$ with expectation μ and $\mathcal{S}=\sum_{i=1}^{n} X_{i}$. Use standard Chernoff bound proved in class to upper bound the probability that \mathcal{S} takes value more than $(1+\delta) \mu$.
11. Let X be a random variable with expectation μ and variance σ^{2}. Then for any $t \in \mathbb{R} \geqslant 0$, prove the following.

$$
\operatorname{Pr}[X-\mu \geqslant \mathrm{t} \sigma] \leqslant \frac{1}{1+\mathrm{t}^{2}} \text { and } \operatorname{Pr}[|X-\mu| \geqslant \mathrm{t} \sigma] \leqslant \frac{2}{1+\mathrm{t}^{2}}
$$

12. Let X be a non-negative integer valued random variable with positive expectation. Then prove the following.

$$
\operatorname{Pr}[X=0] \leqslant \frac{\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}}{\mathbb{E}[X]^{2}} \text { and } \frac{\mathbb{E}[X]^{2}}{\mathbb{E}\left[X^{2}\right]} \leqslant \operatorname{Pr}[X \neq 0] \leqslant \mathbb{E}[X]
$$

13. Design a randomized algorithm for computing if a given directed graph contains a cycle of length at least k. Your algorithm should run in time $\mathcal{O}\left(c^{k} \operatorname{poly}(n)\right)$ where c is some constant.

[^0]: Assume that the random variables are discrete if not explicitly mentioned. Submit the answer of the questions colored red by January 21 in my mail box.

