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Assume that the random variables are discrete if not explicitly mentioned. Submit the answer of the questions
colored red by January 21 in my mail box.

1. Let Xi, i ∈ [n] be n random variables each with finite support. Then prove the following.

var

 n∑
i=1

Xi

 =

n∑
i=1

var (Xi) + 2
∑

16i<j6n

cov(Xi,Xj)

where for any two random variables X and Y, we define cov(X,Y) = E[XY] − E[X]E[Y].

2. Let X and Y be two independent random variables. Then prove that E[XY] = E[X]E[Y]. From this
conclude that, for n pairwise random variables Xi, i ∈ [n], we have the following.

var

 n∑
i=1

Xi

 =

n∑
i=1

var(Xi)

3. Fix any input sequence of n integers to the quick sort algorithm. Let X be the random variable denoting
the number of comparisons the the quick sort algorithm makes on the input sequence. Then prove that
var(X) = O(n2).

4. Let Ai, i ∈ [n] be n objects each having two attributes Axi and Ayi . The attribute y is 0 for every Ai.
Suppose we have a deterministic quick sort algorithm that can sort Ai, i ∈ [n] on the attribute x or on
the attribute y. Can you use this deterministic quick sort algorithm to design a randomized algorithm
to sort Ai, i ∈ [n] on the attribute x which makes an expected O(n logn) comparisons? Please prove
that your algorithm indeed makes O(n logn) comparisons on expectation.

5. Let Xi, i ∈ [n] be n pairwise independent random variables each taking values in {0, 1} with expectation
µ and S =

∑n
i=1 Xi. Then for any positive real number δ we have the following.

Pr
[
S 6 (1 − δ)µ

]
6

(
e−δ

(1 − δ)1−δ

)µ
6. Show that the expected number of balls one needs to through randomly into m bins to have every bin

at least one ball is O(m logm).

7. Give an example of a random variable whose expectation exists but variance does not exist.

8. Find the expectation and variance of the number of swaps that the bubble sort algorithm performs on
a uniformly random permutation of n distinct integers.
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9. Prove the weak law of large numbers using Chebyshev inequality. The weak law of large number states
that, for random variables Xi, i ∈ N which are distributes independently and identically with mean µ
and variance σ2, we have the following for any constant ε > 0

lim
n→∞ Pr

[∣∣∣∣X1 + X2 + · · ·+ Xn
n

− µ

∣∣∣∣ > ε] = 0

10. Let Xi, i ∈ [n] be n pairwise independent random variables each taking values in {0, 2} with expectation
µ and S =

∑n
i=1 Xi. Use standard Chernoff bound proved in class to upper bound the probability that

S takes value more than (1 + δ)µ.

11. Let X be a random variable with expectation µ and variance σ2. Then for any t ∈ R>0, prove the
following.

Pr
[
X− µ > tσ

]
6

1
1 + t2

and Pr
[
|X− µ| > tσ

]
6

2
1 + t2

12. Let X be a non-negative integer valued random variable with positive expectation. Then prove the
following.

Pr
[
X = 0

]
6

E[X2] − E[X]2

E[X]2
and

E[X]2

E[X2]
6 Pr[X 6= 0] 6 E[X]

13. Design a randomized algorithm for computing if a given directed graph contains a cycle of length at
least k. Your algorithm should run in time O(ckpoly(n)) where c is some constant.
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