INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Parameterized Algorithms: Class Test 3 2020-21

Date of Examination: 22 October 2020 Duration: 35 Minutes + 10 Minutes (for uploading answer scripts on Moodle) Full Marks: 15 Subject No: CS60083 Subject: Parameterized Algorithms Department/Center/School: COMPUTER SCIENCE AND ENGINEERING

You may refer to the book and all lecture slides during the exam. Please cite results that you are not proving in your answer script.

- 1. The distance $d^{\mathcal{G}}(v, w)$ between two vertices v, w of a graph \mathcal{G} is the minimum of the lengths of paths from v to w, or ∞ if no such path exists. Let $k \in \mathbb{N}$ and $\mathcal{G} = (V, E)$ be a graph. An L(2, 1)-*k*-coloring of \mathcal{G} is a mapping $C : V \to [k]$ such that for all $v, w \in V$:
 - \triangleright If $d^{\mathfrak{G}}(v, w) = 1$, then $|C(v) C(w)| \ge 2$.
 - \triangleright If $d^{\mathfrak{G}}(v, w) = 2$, then $|C(v) C(w)| \ge 1$.

Such colorings are motivated by the problem of assigning frequencies to transmitters. Prove that for every $k \in \mathbb{N}$ the following problem is fixed-parameter tractable:

p^{*}-tw-L(2, 1)-COLORING Instance: A graph \mathcal{G} and k ∈ N. Parameter: tw(\mathcal{G}) + k. Problem: Decide whether \mathcal{G} has an L(2, 1)-k-coloring.

Hint: Use Courcelle's Theorem

[10 Marks]

2. A graph \mathcal{G} is said to be a k-IC-graph if $V(\mathcal{G})$ can be partitioned into k parts such that each part is either an independent set or a clique. Assuming $k \ge 3$, recognising whether a graph is a k-IC-graph is NP-complete. Given a $k \ge 3$, design a $2^n n^{O(1)}$ exact algorithm for recognising if a given graph is a k-IC-graph or not.

[5 Marks]

Best of luck -