Number Systems

Palash Dey
Department of Computer Science \& Engg.
Indian Institute of Technology
Kharagpur
Slides credit: Prof. Indranil Sen Gupta

Number Representation

Binary
Hexadecimal
Decimal

Topics to be Discussed

- How are numeric data items actually stored in computer memory?
- How much space (memory locations) is allocated for each type of data?
- int, float, char, double, etc.
- How are characters and strings stored in memory?
- Already discussed.

Number System :: The Basics

- We are accustomed to using the so-called decimal number system.
- Ten digits :: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Every digit position has a weight which is a power of 10.
- Base or radix is 10.
- Example:
$234=2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}$
$250.67=2 \times 10^{2}+5 \times 10^{1}+0 \times 10^{0}+6 \times 10^{-1}+7 \times 10^{-2}$

Binary Number System

- Two digits:
- 0 and 1.
- Every digit position has a weight which is a power of 2.
- Base or radix is 2.
- Example:

$$
\begin{aligned}
& 110=1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0} \\
& 101.01=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+1 \times 2^{-2}
\end{aligned}
$$

Binary-to-Decimal Conversion

- Each digit position of a binary number has a weight.
- Some power of 2.
- A binary number:

$$
B=b_{n-1} b_{n-2} \ldots . . . b_{1} b_{0} \cdot b_{-1} b_{-2} \ldots \ldots . b_{-m}
$$

Corresponding value in decimal:

$$
D=\sum_{i=-m} b_{i} 2^{i}
$$

Examples

1. $101011 \rightarrow 1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$

$$
=43
$$

$(101011)_{2}=(43)_{10}$

1. $.0101 \rightarrow 0 \times 2^{-1}+1 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4}$
$=.3125$
$(.0101)_{2}=(.3125)_{10}$
2. $101.11 \rightarrow 1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2}$
5.75
$(101.11)_{2}=(5.75)_{10}$

Decimal-to-Binary Conversion

- Consider the integer and fractional parts separately.
- For the integer part,
- Repeatedly divide the given number by 2, go on accumulating the remainders, until the number becomes zero.
- Arrange the remainders in reverse order.
- For the fractional part,
- Repeatedly multiply the given fraction by 2.
- Accumulate the integer part (0 or 1).
- If the integer part is 1, chop it off.
- Arrange the integer parts in the order they are obtained.

Example 1 :: 239

2	239	
2	119	--1
2	59	--1
2	29	--1
2	14	--1
2	7	--1
2	3	--1
2	1	--1
2	0	--1

Example 2 :: 64

2	64
2	32--- 0
2	16--- 0
2	8 --- 0
2	4 --- 0
2	2 --- 0
2	1 --- 0
2	0 --- 1

$(64)_{10}=(1000000)_{2}$

Example 3 :: . 634

```
. 634 x 2 = 1.268
.268 x 2 = 0.536
.536 x 2 = 1.072
.072 x 2 = 0.144
.144 x 2 = 0.288
```


Example 4 :: 37.0625

$(37)_{10}=(100101)_{2}$
$(.0625)_{10}=(.0001)_{2}$
$\therefore(37.0625)_{10}=(100101.0001)_{2}$

Hexadecimal Number System

- A compact way of representing binary numbers.
- 16 different symbols (radix = 16).

$$
\begin{array}{ll}
0 \rightarrow 0000 & 8 \rightarrow 1000 \\
1 \rightarrow 0001 & 9 \rightarrow 1001 \\
2 \rightarrow 0010 & A \rightarrow 1010 \\
3 \rightarrow 0011 & B \rightarrow 1011 \\
4 \rightarrow 0100 & C \rightarrow 1100 \\
5 \rightarrow 0101 & D \rightarrow 1101 \\
6 \rightarrow 0110 & E \rightarrow 1110 \\
7 \rightarrow 0111 & F \rightarrow 1111
\end{array}
$$

Binary-to-Hexadecimal Conversion

- For the integer part,
- Scan the binary number from right to left.
- Translate each group of four bits into the corresponding hexadecimal digit.
- Add leading zeros if necessary.
- For the fractional part,
- Scan the binary number from left to right.
- Translate each group of four bits into the corresponding hexadecimal digit.
- Add trailing zeros if necessary.

Examples

1. $(\underline{1011} \underline{0100} \underline{0011})_{2}=(B 43)_{16}$
2. $(\underline{10} \underline{1010} \underline{0001})_{2}=(2 A 1)_{16}$
3. $(. \underline{1000} \underline{010})_{2}=(.84)_{16}$
4. $(\underline{101} \cdot \underline{0101} \underline{111})_{2}=(5.5 E)_{16}$

Hexadecimal-to-Binary Conversion

- Translate every hexadecimal digit into its 4-bit binary equivalent.
- Discard leading and trailing zeros if desired.

Examples:

$$
\begin{array}{ll}
(3 A 5)_{16} & =(001110100101)_{2} \\
(12.3 D)_{16} & =(00010010.00111101)_{2} \\
(1.8)_{16} & =(0001.1000)_{2}
\end{array}
$$

Number Representation

Unsigned and Signed numbers

Unsigned Binary Numbers

- An n-bit binary number

$$
B=b_{n-1} b_{n-2} \ldots . B_{2} b_{1} b_{0}
$$

(2^{n} distinct combinations are possible, 0 to $2^{n}-1$)

- For $\mathbf{n}=3$, there are 8 distinct combinations.
- 000, 001, 010, 011, 100, 101, 110, 111
- Range of numbers that can be represented

$$
\begin{array}{lll}
n=8 & \Rightarrow & 0 \text { to } 2^{8}-1(255) \\
n=16 & \Rightarrow & 0 \text { to } 2^{16}-1(65535) \\
n=32 & \Rightarrow & 0 \text { to } 2^{32}-1(4294967295)
\end{array}
$$

Signed Integer Representation

- Many of the numerical data items that are used in a program are signed (positive or negative).
- Question:: How to represent sign?
- Three possible approaches:
a) Sign-magnitude representation
b) One's complement representation
c) Two's complement representation

Sign-magnitude Representation

- For an n-bit number representation
- The most significant bit (MSB) indicates sign
$0 \rightarrow$ positive
$1 \rightarrow$ negative
- The remaining n-1 bits represent magnitude.

Example :: n=4

$$
\begin{array}{ll}
0000 \rightarrow+0 & 1000 \rightarrow-0 \\
0001 \rightarrow+1 & 1001 \rightarrow-1 \\
0010 \rightarrow+2 & 1010 \rightarrow-2 \\
0011 \rightarrow+3 & 1011 \rightarrow-3 \\
0100 \rightarrow+4 & 1100 \rightarrow-4 \\
0101 \rightarrow+5 & 1101 \rightarrow-5 \\
0110 \rightarrow+6 & 1110 \rightarrow-6 \\
0111 \rightarrow+7 & 1111 \rightarrow-7
\end{array}
$$

15 distinct numbers can be represented

Contd.

- Range of numbers that can be represented:

Maximum :: + ($\left.2^{n-1}-1\right)$
Minimum :: - $\left(2^{n-1}-1\right)$

- A problem:

Two different representations of zero.

$$
\begin{array}{rlll}
+0 & \rightarrow & 0 & 000 \ldots .0 \\
-0 & \rightarrow & 1 & 000 \ldots .0
\end{array}
$$

One's Complement Representation

- Basic idea:
- Positive numbers are represented exactly as in signmagnitude form.
- Negative numbers are represented in 1's complement form.
- How to compute the 1's complement of a number?
- Complement every bit of the number ($1 \rightarrow 0$ and $0 \rightarrow 1$).
- MSB will indicate the sign of the number.
$0 \rightarrow$ positive
$1 \rightarrow$ negative

Example :: n=4

$$
\begin{array}{ll}
0000 \rightarrow+0 & 1000 \rightarrow-7 \\
0001 \rightarrow+1 & 1001 \rightarrow-6 \\
0010 \rightarrow+2 & 1010 \rightarrow-5 \\
0011 \rightarrow+3 & 1011 \rightarrow-4 \\
0100 \rightarrow+4 & 1100 \rightarrow-3 \\
0101 \rightarrow+5 & 1101 \rightarrow-2 \\
0110 \rightarrow+6 & 1110 \rightarrow-1 \\
0111 \rightarrow+7 & 1111 \rightarrow-0
\end{array}
$$

To find the representation of, say, -4 , first note that
$+4=0100$
$-4=1$'s complement of $0100=1011$

Contd.

- Range of numbers that can be represented:

Maximum :: + (2 $\left.2^{n-1}-1\right)$
Minimum :: - $\left(2^{n-1}-1\right)$

- A problem:

Two different representations of zero.

$$
\begin{array}{lll}
+0 & \rightarrow 000 . \ldots .0 \\
-0 & \rightarrow & 1111 \ldots . . .
\end{array}
$$

- Advantage of 1's complement representation
- Subtraction can be done using addition.
- Leads to substantial saving in circuitry.
- Sign extension is possible to increase number of bits to represent.

$$
\begin{aligned}
& -3=1100 \text { (in } 4 \text { bits) }=11111100 \text { (in } 8 \text { bits) } \\
& +3=0011 \text { (in } 4 \text { bits) }=00000011 \text { (in } 8 \text { bits) }
\end{aligned}
$$

Two's Complement Representation

- Basic idea:
- Positive numbers are represented exactly as in signmagnitude form.
- Negative numbers are represented in 2's complement form.
- How to compute the 2's complement of a number?
- Complement every bit of the number ($1 \rightarrow 0$ and $0 \rightarrow 1$), and then add 1 to the resulting number.
- MSB will indicate the sign of the number.
$0 \rightarrow$ positive
$1 \rightarrow$ negative

Example :: n=4

$$
\begin{aligned}
& 0000 \rightarrow+0 \\
& 0001 \rightarrow+1 \\
& 0010 \rightarrow+2 \\
& 0011 \rightarrow+3 \\
& 0100 \rightarrow+4 \\
& 0101 \rightarrow+5 \\
& 0110 \rightarrow+6 \\
& 0111 \rightarrow+7
\end{aligned}
$$

To find the representation of, say, -4 , first note that
$+4=0100$
$-4=2$'s complement of $0100=1011+1=1100$

Contd.

- Range of numbers that can be represented:

$$
\begin{aligned}
& \text { Maximum }::+\left(2^{n-1}-1\right) \\
& \text { Minimum }::-2^{n-1}
\end{aligned}
$$

- Advantage:
- Unique representation of zero.
- Subtraction can be done using addition.
- Leads to substantial saving in circuitry.
- Sign extension is possible to increase number of bits to represent.

$$
\begin{aligned}
& -3=1101 \text { (in } 4 \text { bits) }=11111101 \text { (in } 8 \text { bits) } \\
& +3=0011 \text { (in } 4 \text { bits) }=00000011 \text { (in } 8 \text { bits) }
\end{aligned}
$$

- Almost all computers today use the 2's complement representation for storing negative numbers.

Contd.

- In C (typical values):

- short int
- 16 bits $\rightarrow+\left(2^{15}-1\right)$ to -2^{15}
- int
- 32 bits $\rightarrow+\left(2^{31}-1\right)$ to -2^{31}
- long int
- 64 bits $\rightarrow+\left(2^{63}-1\right)$ to -2^{63}

Binary operations

Addition
 Subtraction using addition

Binary addition

- Rules for adding two bits:

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=10, \text { i.e., } 0 \text { with carry of } 1
\end{aligned}
$$

- Addition examples for unsigned numbers:

Subtraction Using Addition :: 1's Complement

- How to compute A-B ?
- Compute the 1's complement of B (say, B_{1}).
- Compute $\mathrm{R}=\mathrm{A}+\mathrm{B}_{1}$
- If the carry obtained after addition is ' 1 '
- Add the carry back to R (called end-around carry).
- That is, $R=R+1$.
- The result is a positive number.

Else

- The result is negative, and is in 1's complement form.

Example 1 :: 6-2

1's complement of 2 = 1101

Assume 4-bit representations. Since there is a carry, it is added back to the result. The result is positive.

Example 2 :: 3-5

1's complement of 5 = 1010

$$
\left.\begin{array}{rlllll}
3 & : & 0 & 0 & 1 & 1
\end{array}\right]
$$

Assume 4-bit representations.
Since there is no carry, the result is negative.

1101 is the 1 's complement of 0010, that is, it represents -2.

Subtraction Using Addition :: 2's Complement

- How to compute A - B ?
- Compute the 2's complement of B (say, B_{2}).
- Compute $\mathrm{R}=\mathrm{A}+\mathrm{B}_{2}$
- If the carry obtained after addition is ' 1 '
- Ignore the carry.
- The result is a positive number.

Else

- The result is negative, and is in 2's complement form.

Example 1 :: 6-2

2's complement of $2=1101+1=1110$

[^0]
Example 2 :: 3-5

$$
2 \text { 's complement of } 5=1010+1=1011
$$

$$
\begin{array}{ccccccc}
3 & : & 0 & 0 & 1 & 1 & A \\
-5 & : & 1 & 0 & 1 & 1 & B_{2} \\
& & 1 & 1 & 1 & 0 & R \\
& & & & & \\
& & -2 & & &
\end{array}
$$

Assume 4-bit representations.
Since there is no carry, the result is negative.

1110 is the 2's complement of 0010, that is, it represents -2.

Floating-point number representation

Floating-point Numbers

- The representations discussed so far applies only to integers.
- Cannot represent numbers with fractional parts.
- We can assume a decimal point before a 2's complement number.
- In that case, pure fractions (without integer parts) can be represented.
- We can also assume the decimal point somewhere in between.
- This lacks flexibility.
- Very large and very small numbers cannot be represented.

Representation of Floating-Point Numbers

- A floating-point number Fis represented by a doublet <M,E> :
$F=M \times B^{E}$
- B : exponent base (usually 2)
- M : mantissa
- E : exponent
- M is usually represented in 2's complement form, with an implied decimal point before it.
- For example,

In decimal,
0.235×10^{6}
In binary,
0.101011×2^{0110}

Example :: 32-bit representation

- M represents a 2's complement fraction

$$
1>M>-1
$$

- E represents the exponent (in 2's complement form)

$$
127>E>-128
$$

- Points to note:
- The number of significant digits depends on the number of bits in M.
- 6 significant digits for 24-bit mantissa.
- The range of the number depends on the number of bits in E.
- 10^{38} to 10^{-38} for 8-bit exponent.

A Warning

- The representation for floating-point numbers as shown is just for illustration.
- The actual representation is a little more complex.
- In C:
- float :: 32-bit representation
- double :: 64-bit representation

Representation of
 Characters and Strings

Representation of Characters

- Many applications have to deal with non-numerical data
- Characters and strings.
- There must be a standard mechanism to represent alphanumeric and other characters in memory.
- Three standards in use:
- Extended Binary Coded Decimal Interchange Code (EBCDIC)
- Used in older IBM machines.
- American Standard Code for Information Interchange (ASCII)
- Most widely used today.
- UNICODE
- Used to represent all international characters.
- Used by Java.

ASCII Code

- Each individual character is numerically encoded into a unique 7-bit binary code.
- A total of 2^{7} or 128 different characters.
- A character is normally encoded in a byte (8 bits), with the MSB not been used.
- The binary encoding of the characters follow a regular ordering.
- Digits are ordered consecutively in their proper numerical sequence (0 to 9).
- Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic order.

Some Common ASCII Codes

```
'A' :: 41 (H) 65 (D)
'B' :: 42 (H) 66 (D)
.........
'Z' :: 5A (H) 90 (D)
'a' :: 61 (H) 97(D)
'b' :: 62 (H) }98\mathrm{ (D)
'z' :: 7A (H) 122 (D)
```

```
'0' :: 30 (H) 48 (D)
'1' :: 31(H) 49(D)
...........
'9' :: 39 (H) 57 (D)
`' :: 28 (H) 40 (D)
‘+' :: 2B (H) 43 (D)
'?' :: 3F (H) 63(D)
`\n':: OA (H) 10 (D)
`\0' :: 00 (H) 00 (D)
```


Character Strings

- Two ways of representing a sequence of characters in memory.
- The first location contains the number of characters in the string, followed by the actual characters.

- The characters follow one another, and is terminated by a special delimiter.

String Representation in C

- In C, the second approach is used.
- The ' $\backslash 0$ ' character is used as the string delimiter.
- Example:

"Hello" \rightarrow| H | e | 1 | I | o | |
| :--- | :--- | :--- | :--- | :--- | :--- |

- A null string "" occupies one byte in memory.
- Only the ' 10 ' character.

[^0]: Assume 4-bit representations.
 Presence of carry indicates that the result is positive.

 No need to add the end-around carry like in 1's complement.

