Number Systems

Palash Dey
Department of Computer Science & Engg.
Indian Institute of Technology
Kharagpur

Slides credit: Prof. Indranil Sen Gupta

Number Representation

Binary
Hexadecimal
Decimal

Topics to be Discussed

- How are numeric data items actually stored in computer memory?
- How much space (memory locations) is allocated for each type of data?
 - int, float, char, double, etc.
- How are characters and strings stored in memory?
 - Already discussed.

Number System :: The Basics

- We are accustomed to using the so-called decimal number system.
 - Ten digits :: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Every digit position has a weight which is a power of 10.
 - Base or radix is 10.

• Example:

$$234 = 2 \times 10^{2} + 3 \times 10^{1} + 4 \times 10^{0}$$
$$250.67 = 2 \times 10^{2} + 5 \times 10^{1} + 0 \times 10^{0} + 6 \times 10^{-1} + 7 \times 10^{-2}$$

Binary Number System

Two digits:

- 0 and 1.
- Every digit position has a weight which is a power of 2.
- Base or radix is 2.

• Example:

$$110 = 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$101.01 = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}$$

Binary-to-Decimal Conversion

- Each digit position of a binary number has a weight.
 - Some power of 2.
- A binary number:

$$B = b_{n-1} b_{n-2} \dots b_1 b_0 \cdot b_{-1} b_{-2} \dots b_{-m}$$

Corresponding value in decimal:

$$D = \sum_{i=-m} b_i 2^i$$

Examples

1.
$$101011 \rightarrow 1x2^5 + 0x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0$$

= 43
 $(101011)_2 = (43)_{10}$

1. .0101
$$\rightarrow$$
 0x2⁻¹ + 1x2⁻² + 0x2⁻³ + 1x2⁻⁴
= .3125
(.0101)₂ = (.3125)₁₀

1.
$$101.11$$
 $\rightarrow 1x2^2 + 0x2^1 + 1x2^0 + 1x2^{-1} + 1x2^{-2}$
 5.75
 $(101.11)_2 = (5.75)_{10}$

Decimal-to-Binary Conversion

- Consider the integer and fractional parts separately.
- For the integer part,
 - Repeatedly divide the given number by 2, go on accumulating the remainders, until the number becomes zero.
 - Arrange the remainders in reverse order.
- For the fractional part,
 - Repeatedly multiply the given fraction by 2.
 - Accumulate the integer part (0 or 1).
 - If the integer part is 1, chop it off.
 - Arrange the integer parts in the order they are obtained.

Example 1 :: 239

Example 2 :: 64

Example 3 :: .634

```
.634 \times 2 = 1.268
.268 \times 2 = 0.536
.536 \times 2 = 1.072
.072 \times 2 = 0.144
.144 \times 2 = 0.288
:
```

Example 4 :: 37.0625

$$(37)_{10} = (100101)_2$$

 $(.0625)_{10} = (.0001)_2$

$$(37.0625)_{10} = (100101.0001)_{2}$$

Hexadecimal Number System

- A compact way of representing binary numbers.
- 16 different symbols (radix = 16).

```
0 \rightarrow 0000
             8 → 1000
1 \rightarrow 0001
            9 → 1001
2 \rightarrow 0010 A \rightarrow 1010
3 \rightarrow 0011
             B \rightarrow 1011
4 → 0100
                  C \rightarrow 1100
5 → 0101
                  D \rightarrow 1101
6 → 0110
                  E → 1110
7 → 0111
              F \rightarrow 1111
```

Binary-to-Hexadecimal Conversion

- For the integer part,
 - Scan the binary number from right to left.
 - Translate each group of four bits into the corresponding hexadecimal digit.
 - Add leading zeros if necessary.
- For the fractional part,
 - Scan the binary number from left to right.
 - Translate each group of four bits into the corresponding hexadecimal digit.
 - Add trailing zeros if necessary.

Examples

```
1. (1011\ 0100\ 0011)_2 = (B43)_{16}
```

2.
$$(10 \ 1010 \ 0001)_2 = (2A1)_{16}$$

$$3. \quad (.\underline{1000} \ \underline{010})_2 \qquad = (.84)_{16}$$

4.
$$(101.0101111)_2 = (5.5E)_{16}$$

Hexadecimal-to-Binary Conversion

- Translate every hexadecimal digit into its 4-bit binary equivalent.
 - Discard leading and trailing zeros if desired.

• Examples:

```
(3A5)_{16} = (0011 \ 1010 \ 0101)_{2}

(12.3D)_{16} = (0001 \ 0010 \ .0011 \ 1101)_{2}

(1.8)_{16} = (0001 \ .1000)_{2}
```

Number Representation

Unsigned and Signed numbers

Unsigned Binary Numbers

An n-bit binary number

$$B = b_{n-1}b_{n-2}....B_2b_1b_0$$

(2^n distinct combinations are possible, 0 to 2^n-1)

- For n = 3, there are 8 distinct combinations.
 - **-** 000, 001, 010, 011, 100, 101, 110, 111
- Range of numbers that can be represented

$$n=8$$
 \rightarrow 0 to 2^8-1 (255)

$$n=16$$
 \rightarrow 0 to $2^{16}-1$ (65535)

$$n=32$$
 \rightarrow 0 to $2^{32}-1$ (4294967295)

Signed Integer Representation

- Many of the numerical data items that are used in a program are signed (positive or negative).
 - Question:: How to represent sign?
- Three possible approaches:
 - a) Sign-magnitude representation
 - b) One's complement representation
 - c) Two's complement representation

Sign-magnitude Representation

- For an n-bit number representation
 - The most significant bit (MSB) indicates sign
 - 0 → positive
 - 1 → negative
 - The remaining n-1 bits represent magnitude.

Example :: n=4

0000 > +0	1000 → -0
0001 > +1	1001 → -1
0010 → +2	1010 → -2
0011 → +3	1011 → -3
0100 → +4	1100 → -4
0101 → +5	1101 → -5
0110 → +6	1110 → -6
0111 → +7	1111 → -7

15 distinct numbers can be represented

Contd.

• Range of numbers that can be represented:

```
Maximum :: +(2^{n-1}-1)
Minimum :: -(2^{n-1}-1)
```

• A problem:

Two different representations of zero.

One's Complement Representation

• Basic idea:

- Positive numbers are represented exactly as in signmagnitude form.
- Negative numbers are represented in 1's complement form.
- How to compute the 1's complement of a number?
 - Complement every bit of the number $(1 \rightarrow 0)$ and $(1 \rightarrow 1)$.
 - MSB will indicate the sign of the number.
 - 0 → positive
 - 1 → negative

Example :: n=4

To find the representation of, say, -4, first note that

$$+4 = 0100$$

-4 = 1's complement of 0100 = 1011

Contd.

Range of numbers that can be represented:

```
Maximum :: +(2^{n-1}-1)
Minimum :: -(2^{n-1}-1)
```

• A problem:

Two different representations of zero.

```
+0 → 0 000....0
-0 → 1 111....1
```

- Advantage of 1's complement representation
 - Subtraction can be done using addition.
 - Leads to substantial saving in circuitry.
 - Sign extension is possible to increase number of bits to represent.

```
-3 = 1100 (in 4 bits) = 1111 1100 (in 8 bits)
+3 = 0011 (in 4 bits) = 0000 0011 (in 8 bits)
```

Two's Complement Representation

• Basic idea:

- Positive numbers are represented exactly as in signmagnitude form.
- Negative numbers are represented in 2's complement form.
- How to compute the 2's complement of a number?
 - Complement every bit of the number $(1 \rightarrow 0 \text{ and } 0 \rightarrow 1)$, and then add 1 to the resulting number.
 - MSB will indicate the sign of the number.
 - 0 → positive
 - 1 → negative

Example :: n=4

0000 → +0	1000 → -8
0001 > +1	1001 → -7
0010 → +2	1010 → -6
0011 → +3	1011 → -5
0100 → +4	1100 → -4
0101 → +5	1101 → -3
0110 → +6	1110 → -2
0111 → +7	1111 → -1

To find the representation of, say, -4, first note that

$$+4 = 0100$$

-4 = 2's complement of 0100 = 1011 + 1 = 1100

Contd.

Range of numbers that can be represented:

```
Maximum :: +(2^{n-1}-1)
Minimum :: -2^{n-1}
```

Advantage:

- Unique representation of zero.
- Subtraction can be done using addition.
- Leads to substantial saving in circuitry.
- Sign extension is possible to increase number of bits to represent.

```
-3 = 1101 (in 4 bits) = 1111 1101 (in 8 bits)
+3 = 0011 (in 4 bits) = 0000 0011 (in 8 bits)
```

• Almost all computers today use the 2's complement representation for storing negative numbers.

Contd.

- In C (typical values):
 - short int
 - 16 bits \rightarrow + (2¹⁵-1) to -2¹⁵
 - int
 - 32 bits \rightarrow + (2³¹-1) to -2³¹
 - long int
 - 64 bits \rightarrow + (2⁶³-1) to -2⁶³

Binary operations

Addition Subtraction using addition

Binary addition

• Rules for adding two bits:

```
0+0=0

0+1=1

1+0=1

1+1=10, i.e., 0 with carry of 1
```

Addition examples for unsigned numbers:

Subtraction Using Addition :: 1's Complement

- How to compute A B?
 - Compute the 1's complement of B (say, B_1).
 - Compute $R = A + B_1$
 - If the carry obtained after addition is '1'
 - Add the carry back to R (called end-around carry).
 - That is, R = R + 1.
 - The result is a positive number.

Else

• The result is negative, and is in 1's complement form.

Example 1 :: 6 - 2

1's complement of 2 = 1101

Assume 4-bit representations.

Since there is a carry, it is added back to the result.

The result is positive.

Example 2 :: 3 - 5

1's complement of 5 = 1010

$$3 :: 0 0 1 1 A$$
 $-5 :: 1 0 1 0 B_1$
 $1 1 0 1 R$
 $0 0 1 0 B_2$

Assume 4-bit representations.

Since there is no carry, the result is negative.

1101 is the 1's complement of 0010, that is, it represents -2.

Subtraction Using Addition :: 2's Complement

- How to compute A B?
 - Compute the 2's complement of B (say, B_2).
 - Compute $R = A + B_2$
 - If the carry obtained after addition is '1'
 - Ignore the carry.
 - The result is a positive number.

Else

• The result is negative, and is in 2's complement form.

Example 1 :: 6 - 2

$$2's$$
 complement of $2 = 1101 + 1 = 1110$

Assume 4-bit representations.

Presence of carry indicates that the result is positive.

No need to add the end-around carry like in 1's complement.

Example 2 :: 3 - 5

$$2's$$
 complement of $5 = 1010 + 1 = 1011$

$$3 :: 0 0 1 1 A$$
 $-5 :: 1 0 1 1 B_2$
 $1 1 1 0 R$
 -2

Assume 4-bit representations.

Since there is no carry, the result is negative.

1110 is the 2's complement of 0010, that is, it represents -2.

Floating-point number representation

Floating-point Numbers

- The representations discussed so far applies only to integers.
 - Cannot represent numbers with fractional parts.
- We can assume a decimal point before a 2's complement number.
 - In that case, pure fractions (without integer parts) can be represented.
- We can also assume the decimal point somewhere in between.
 - This lacks flexibility.
 - Very large and very small numbers cannot be represented.

Representation of Floating-Point Numbers

A floating-point number F is represented by a doublet <M,E>:

```
F = M x B<sup>E</sup>
B : exponent base (usually 2)
M : mantissa
E : exponent
```

- M is usually represented in 2's complement form, with an implied decimal point before it.
- For example,
 In decimal,
 0.235 x 106
 In binary,
 0.101011 x 20110

Example :: 32-bit representation

M represents a 2's complement fraction

$$1 > M > -1$$

E represents the exponent (in 2's complement form)

$$127 > E > -128$$

Points to note:

- The number of significant digits depends on the number of bits in M.
 - 6 significant digits for 24-bit mantissa.
- The range of the number depends on the number of bits in E.
 - 10³⁸ to 10⁻³⁸ for 8-bit exponent.

A Warning

- The representation for floating-point numbers as shown is just for illustration.
- The actual representation is a little more complex.
- In C:
 - float :: 32-bit representation
 - double :: 64-bit representation

Representation of Characters and Strings

Representation of Characters

- Many applications have to deal with non-numerical data
 - Characters and strings.
 - There must be a standard mechanism to represent alphanumeric and other characters in memory.

Three standards in use:

- Extended Binary Coded Decimal Interchange Code (EBCDIC)
 - Used in older IBM machines.
- American Standard Code for Information Interchange (ASCII)
 - Most widely used today.
- UNICODE
 - Used to represent all international characters.
 - Used by Java.

ASCII Code

- Each individual character is numerically encoded into a unique 7-bit binary code.
 - A total of 2⁷ or 128 different characters.
 - A character is normally encoded in a byte (8 bits), with the MSB not been used.
- The binary encoding of the characters follow a regular ordering.
 - Digits are ordered consecutively in their proper numerical sequence (0 to 9).
 - Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic order.

Some Common ASCII Codes

```
'A' :: 41 (H) 65 (D)
'B' :: 42 (H) 66 (D)
'Z' :: 5A (H) 90 (D)
'a' :: 61 (H) 97 (D)
'b' :: 62 (H) 98 (D)
'z' :: 7A (H) 122 (D)
```

```
'0' :: 30 (H) 48 (D)
'1' :: 31 (H) 49 (D)
'9' :: 39 (H) 57 (D)
"(" :: 28 (H) 40 (D)
'+' :: 2B (H) 43 (D)
'?' :: 3F (H) 63 (D)
'\n':: OA (H) 10 (D)
\0':: 00 (H) 00 (D)
```

Character Strings

- Two ways of representing a sequence of characters in memory.
 - The first location contains the number of characters in the string, followed by the actual characters.

 The characters follow one another, and is terminated by a special delimiter.

String Representation in C

- In C, the second approach is used.
 - The '\0' character is used as the string delimiter.
- Example:

"Hello" → H e I I o

- A null string "" occupies one byte in memory.
 - Only the '\0' character.