Pointers and 2-D Arrays

Palash Dey

Department of Computer Science & Engg.

Indian Institute of Technology
Kharagpur

Slides credit: Prof. Indranil Sen Gupta

Concept of pointer to pointer

e A pointer stores the memory address of a
variable.

e The pointer itself is a variable, and is stored
in memory.

e We can define a pointer to pointer, to store
the memory address of a pointer variable.

Example 1

#include <stdio.h>

main ()

{
int var; int *ptr; int **pptr;
var = 3000;
ptr = &var; // Points to "var"
pptr = &ptr; // Points to "ptr"

printf ("Value of var = %d \n", var);
printf ("Value available at *ptr = %d \n", *ptr);

printf ("Value available at **pptr = %d \n", **pptr);

Output

Value of var = 3000
Value available at *ptr = 3000
Value available at **pptr = 3000

Example 2

#include <stdio.h>

main ()
{
int var; int *ptr; int **pptr;
var = 3000;
ptr = &var;
pptr = é&ptr;
printf ("Address of var = %u \n", &var);

printf ("Value of ptr =
printf ("Value stored at pptr =

$u \n", ptr);
$u \n", *pptr);

Address of wvar

Value of ptr =

Value stored at pptr =

Output

= 3974241144
3974241144
3974241144

What does array name mean in 2-D array?

int a[l10], b[5][3];

e We know that ‘a’ is a constant pointer whose value
is the address of the Oth element of the array
al[l0].

e Similarly, a+i is the address of the ith element of
the array.

« What is the meaning of ‘b’ and what is its
arithmetic?

How is a 2-D array is stored in memory?

e Starting from a given memory location, the elements
are stored row-wise in consecutive memory locations.

X: starting address of the array in memory —
c: number of columns int b[5][3];

k: number of bytes allocated per array element

Element b[i] [j] :: allocated memory location at
address x+ (i*c+7j) *k

b[0][0] b[O][1] b[0]2] b[1][0] b[1][1] b[1][2] -..... b[2][0] b[2][1] b[2][2] -......

Row 0 Row 1 Row 2

Arithmetic of ‘b’

int b[5][3]-

b[0][0] b[0][1] b[0]2] b[1][0] b[1][1] b[1][2] -..... b[2][0] b[2][1] b[2][2] -.......

Row 0 Row 1 Row 2
e bis the starting address of the Oth row

* b+l is the starting address of the 1th row

e b+2 is the starting address of the 2th row

e In general, b+i represents the starting address of the
ith row

e The size of arow will be: ¢ x sizeof (int) bytes,
where c is the number of columns.

Example 3

#include <stdio.h>

int main|()

{

int a[10], b[3][5]-

printf
printf
printf
printf

("a:

("a+1:
("a+2:
("a+3:

£ &

o° o° o° oP°
c

ol

\t b:
\t b+1l:
\t b+2:
\t b+3:

%$u \n”, a, b);
u \n”, a+l, b+l);
*u \n”, a+2, b+2);
%u \n”, a+3, b+3);

° o°

a+l:
a+2:
a+3:

3217738332
3217738336
3217738340
3217738344

Output

b:

b+1:
b+2:
b+3:

3217738272
3217738292
3217738312
3217738332

Type of ‘b’

int b[3][5]-

 ‘D’is a pointer constant of type int[] [5], that
is, a contiguous row of five integers.

e If such a pointer is incremented by one, it
increases by 5xsizeof (int) bytes.

Arithmetic of *(b+i)

e If ‘D’ is the address of the Oth row, *b is the Oth row
itself.

- Arow may be viewed as a 1-D array, so *b is the
starting address of this 1-D array, i.e. address of the
Oth element of the Oth row.

e Similarly, b+i is the address of the ith row, * (b+1i)is
the ith row.
- So * (b+i)is the address of the Oth element of the ith
row.

10

For the array b[3][5]

e If *b is the address of the Oth element of the Oth
row, *b+1 is the address of the 1th element of

the Oth row.

e Similarly, *b+j is the address of the jth element of
the Oth row.

e The difference between b+1 and b is 20 bytes, but
the difference between *b+1 and *b is the
sizeof (int), that is, 4 bytes.

11

e So, *(b+i) is the address of the Oth element of the ith
row.

e Thus, *(b+i)+j is the address of the jth element of the
ith row.

- That is, same as &b[i] [j].

* (b+i)+j is equivalent to &b[i][j]

12

Some Equivalences

*b+1) +3 > &b[1][]]
((b + 1) + 3) > b[1][]]
b[i] +] ! > &b[1][]]
*(b[1] + J) > bl[1][]]

(*(b + 1)) [J] ° > Dbl[i]l[]]

13

Calculation of the address of b[i] [j]

int Db[3][5]

e The C compiler can calculate the address of the jth
element of the ith row using the following formula:
b + k (5i + 3)
where k = sizeof (int).
e The compiler needs the following:
- Value of row and column indices

- The number of columns
- The size of the data type.

14

Passing 2-D Arrays to functions
(recap)

15

1-D Array and Formal Parameter

e Consider the declaration: int a[10];

- The array name ‘a’ is a constant pointer.

- The formal parameter: int x[] or int *x is a pointer

variable of the corresponding type, where the address of
an array location is copied into the function.

void sort (int n, int x[]);
void sort (int n, int *x);

- These two information are sufficient for the compiler to
calculate the address of x[i].

16

Formal parameter for 2-D Array

e Consider the declaration: int b[ROW] [COL] ;

- The C compiler needs the following information to calculate the
address of b[i] [j] (giveni and j):
e Starting address ‘b’
o The data type of the array elements, that is, ‘int’

e The number of columns ‘CoL’
e Example:

void matadd (int row, int col, int a[][10],
int b[][10], int c[][10]);

17

An example

#include <stdio.h>

void transpose (int x[][3],
int n)
{
int p, q, t;

for (p=0; p<n; p++)
for (g=p; g<n; g++)
{
t = x[pllal;
x[pl 4l x[q] [p];
x[q] [p] e
}

main ()
{
int a[3][3], p, g’

for (p=0; p<3; p++)
for (g=0; g<3; g++)
scanf (”%d4”, &a[pllql):’
transpose (a, 3);
for (p=0; p<3; p++)
{
printf (”\n”);
for (g=0; g<3; qg++)
printf (“s%d ”, alpllql);

18

Dynamically Allocating 2-D Arrays

19

You may recall

e We have discussed earlier the issue of dynamically
allocating space for 1-D arrays.

- Using malloc () library function.

e Pros and cons of this approach:

- The space gets allocated in global data area called heap (not
on the stack), and hence does not evaporate at the end of
function call.

- The conventional method allocates space in the stack as part
of the activation record, and so is not available across
function calls.

20

Looking back at pointer arithmetic
int *p, (*q)[3], *r[3], **s;

Variable ‘p’ can be used to point to an integer.
Thus, p+i willmean: p + i * sizeof(int)

Variable ‘g’ can be used to point to an integer array of size 5.
Hence, g+i will mean: g + i*5*sizeof (int)

‘r’ is not a variable but a constant pointer (name of an array, each
element of the array is an int*).

So, r+i will mean: r + i * sizeof (int*)

Variable ‘s’ can be used to point to a location of type int* .
Thus, s+i will mean: s + i*sizeof (int*)

21

Some typical values

sizeof (int) : 4
sizeof (int *) : 8
sizeof (int [5]): 20
sizeof (int (*)[5]): 8

sizeof (i1nt **): 8

22

How was 1-D array dynamically allocated?

e Sample code segment:
int *p, n, 1;
scanf (”%d”, &n);
p = (int *) malloc (n * sizeof(int));

e Array elements can be accessed equivalently
as:
pli] = 20;
* (p+i) = 20;

23

Methods to allocate space for 2-D array

1.

Variable number of rows, fixed number of
columns

. Variable number of columns, but fixed

number of rows

. Both number of rows and columns variable

24

Dynamically Allocating 2-D Arrays

Variable number of rows
Fixed number of columns

25

1:: Allocating space for 2-D array nx5

e We can use a pointer of type (*q) [5] to
allocate space for the array of n rows and 5
columns.

int (*q)[53], n;

printf ("Enter nos. of rows:”);

scanf (”%d”, &n);

g = (int (*) [5]) malloc(n*5*sizeof (int)) ;

26

q[0][0]

—_—

q[1][0] q[2][0]

<«

Dynamically allocated
memory

—

27

#include <stdio.h>

#include <stdlib.h> 0 369 12
int main () 2 5 8 11 14
{ 4 7 10 13 16

int (*q) [5],rows,i,];

Enter the number of Rows:

3

printf ("Enter the number of Rows: ")
scanf ("%d", &rows) ;

g = (int (*)[5]) malloc (rows*5*sizeof(int));

for (i=0; i<rows; ++1i)
for (j=0; 3j<5; ++3j)
q[i] [J]=2*1i+3*];
for (i=0; i<rows; ++1i) {
for (j=0; 3j<5; ++3j)
printf("sd ", ql[i][]])~
printf ("\n") ;
}

return 0;

°
14

28

e Some observations:
— ‘g’ points to the Oth row of a 5-element array
— ‘g+i’ points to the ith row of a 5-element array
— *q is the address of q[0] [0], that is, &q[0] [0]
— *g+7j is the address of g[0] [j], that is, &q[0] [J]
— * (g+i)+3j is address of g[i] []j], thatis, &q[i][J]
— **q is q[0] [O]
— *(*q+j) is q[0][]]
= *(*(q+i)+]) is q[il[]]

29

Dynamically Allocating 2-D Arrays

Fixed number of rows
Variable number of columns

30

2:: Allocating space for 2-D array 3xm

e We can use a pointer array of size 3, where
the ith element of the array will point to the

ith row of length m.

- Possible to have different number of elements in
different rows.

int *r[3], i, c;

printf ("Enter nos. of columns:”);

scanf ("%d”, &c);

for (i=0;i<3;i++)
r[i] = (int *) malloc (c*sizeof(int));

31

rf1.
r[2]

Statically allocated
pointer array

Dynamically
allocated
memory

32

#include <stdio.h>
#include <stdlib.h>
int main ()
{
int *r[3], i, j, col;
for (1=0,;, 1<3; ++1i) {
col = 2 * (i+l1);
r[i] = (int *) malloc (col*sizeof(int));
for (jJj=0; j<col; ++3j)
r[i][3] = 1 + J;

} 01
for (1=0; 1i<3; ++1i) { ; g
col = 2 * (i+l);

= W
(O 1 I~

for (j=0; j<col; ++j)
printf("%d ", r[il[j]):;
printf ("\n") ;
}

return 0;

e Some observations:

— r[i] is the ith pointer, which stores the address
of the 0th element of the ith row.

- So, r[i]+] is the address of the jth element of
the ith row.

- *(r[i]+j),same as r[i] [j], is the jth
element of the ith row.

34

Dynamically Allocating 2-D Arrays

Both number of rows and columns
are variable

35

3: Dynamic allocation of rxc array

e We can allocate a 2-D array of variable
number of rows and columns, where both the

number of rows and the number of columns
as inputs.

int **s, r, c;
printf ("Enter nos. of rows, columns:”);
scanf (”%d %d”, &r, &c);
s = (int **) malloc(r * sizeof (int *));
for (i=0;i<r;i++)

s[i] = (int *) malloc(c * sizeof(int));

36

Static allocation

v

s[O] >
s[1] >
s[2] >

Dynamically allocated memory

37

#include <stdio.h>
#include <stdlib.h>
int main ()
{
int **s, row, column, i, j;
printf ("Enter Row & Column:\n”) ;
scanf ("%d %d", &row, &column) ;
s = (int **) malloc(row*sizeof (int *)) ;
for (1=0; i<row; ++1i) {
s[i] = (int *) malloc(column*sizeof (int));
for (j=0; j<column; ++3j)
s[1][3] = 1+] ;

} Enter Row and Column:
for (1=0; i<row; ++1i) { 3 5
for(j=0; j<column; ++j) 012 3 4
printf("%d ", s[i][]]); 1 2345
printf ("\n”) ; 2 3456

}

return 0;

38

e Some observations:

— s+i is the address of the ith element of the
pointer array.
— * (s+i), which is the same as s[i], is the ith

element of the pointer array that stores the
address of the 0th element of the ith row.

— s[i]+]j is the address of the jth element of the
ith row.

— *(s[i]+3), which is the same as s[i] [j], is
the jth element of the ith row.

39

Example with 2-D Array

#include <stdio.h>
#include <stdlib.h>

int **allocate (int h, int w)

{

int **p; Allocate array
int i, j; of pointers

v
p = (int **) calloc (h, sizeof(int *)) ;
for (i=0;i<h;i++)
pl[i] = (int *) calloc (w,sizeof(int));

return (p) ; f

Allocate array of
integers for each row

40

void read data (int **p, int h, int w)
{
int i, j;
for (1=0;i<h;i++)
for (j=0;j<w;j++)
scanf ("%4d", &p[il[]j]); Elements accessed
} like 2-D array elements.

void print data (int **p, int h, int w)
{

int i, j;

for (1=0;i<h;i++)

{

for (3=0;j<w;j++)

printf ("%5d ", p[i][]])

printf ("\n");

}

41

main ()

{
int **p;
int M, N;

printf ("Give M and N \n");
scanf ("%d%d", &M, &N);

p = allocate (M, N);

read data (p, M, N);

printf ("\nThe array read as \n");

print data (p, M, N);

Give M and N

3 3

1 23

4 5 6

7 8 9

The array read
1 2
4 5
7 8

as

(o))}

42

