
Pointers and 2-D Arrays

1

Palash Dey
Department of Computer Science & Engg.

Indian Institute of Technology
Kharagpur

Slides credit: Prof. Indranil Sen Gupta

Concept of pointer to pointer

• A pointer stores the memory address of a
variable.

• The pointer itself is a variable, and is stored
in memory.

• We can define a pointer to pointer, to store
the memory address of a pointer variable.

2

Example 1
#include <stdio.h>
main()
{

 int var; int *ptr; int **pptr;
 var = 3000;
 ptr = &var; // Points to "var"
 pptr = &ptr; // Points to "ptr"
 printf ("Value of var = %d \n", var);
 printf ("Value available at *ptr = %d \n", *ptr);
 printf ("Value available at **pptr = %d \n", **pptr);
}

3

Output
Value of var = 3000
Value available at *ptr = 3000
Value available at **pptr = 3000

Example 2
#include <stdio.h>
main()
{
 int var; int *ptr; int **pptr;
 var = 3000;
 ptr = &var;
 pptr = &ptr;
 printf ("Address of var = %u \n", &var);
 printf ("Value of ptr = %u \n", ptr);
 printf ("Value stored at pptr = %u \n", *pptr);
}

4

Output
Address of var = 3974241144
Value of ptr = 3974241144
Value stored at pptr = 3974241144

What does array name mean in 2-D array?

 int a[10], b[5][3];

• We know that ‘a’ is a constant pointer whose value
is the address of the 0th element of the array
a[10].

• Similarly, a+i is the address of the ith element of
the array.

• What is the meaning of ‘b’ and what is its
arithmetic?

5

6

How is a 2-D array is stored in memory?

• Starting from a given memory location, the elements
are stored row-wise in consecutive memory locations.

x: starting address of the array in memory
c: number of columns
k: number of bytes allocated per array element

Element b[i][j] :: allocated memory location at
 address x+(i*c+j)*k

b[0][0] b[0][1] b[0]2] ….. b[1][0] b[1][1] b[1][2] …… b[2][0] b[2][1] b[2][2] ……..

Row 0 Row 1 Row 2

int b[5][3];

Arithmetic of ‘b’

• b is the starting address of the 0th row
• b+1 is the starting address of the 1th row
• b+2 is the starting address of the 2th row

• In general, b+i represents the starting address of the
ith row

• The size of a row will be: c × sizeof(int) bytes,
where c is the number of columns.

7

b[0][0] b[0][1] b[0]2] ….. b[1][0] b[1][1] b[1][2] …… b[2][0] b[2][1] b[2][2] ……..

Row 0 Row 1 Row 2

int b[5][3];

Example 3

#include <stdio.h>
int main()
{
 int a[10], b[3][5];
 printf (”a: %u \t b: %u \n”, a, b);
 printf (”a+1: %u \t b+1: %u \n”, a+1, b+1);
 printf (”a+2: %u \t b+2: %u \n”, a+2, b+2);
 printf (”a+3: %u \t b+3: %u \n”, a+3, b+3);
}

8

Output
a: 3217738332 b: 3217738272
a+1: 3217738336 b+1: 3217738292
a+2: 3217738340 b+2: 3217738312
a+3: 3217738344 b+3: 3217738332

Type of ‘b’

• ‘b’ is a pointer constant of type int[][5], that
is, a contiguous row of five integers.

• If such a pointer is incremented by one, it
increases by 5×sizeof(int) bytes.

9

int b[3][5];

Arithmetic of *(b+i)

• If ‘b’ is the address of the 0th row, *b is the 0th row
itself.
– A row may be viewed as a 1-D array, so *b is the

starting address of this 1-D array, i.e. address of the
0th element of the 0th row.

• Similarly, b+i is the address of the ith row, *(b+i)is
the ith row.
– So *(b+i)is the address of the 0th element of the ith

row.

10

For the array b[3][5]

• If *b is the address of the 0th element of the 0th
row, *b+1 is the address of the 1th element of
the 0th row.

• Similarly, *b+j is the address of the jth element of
the 0th row.

• The difference between b+1 and b is 20 bytes, but
the difference between *b+1 and *b is the
sizeof(int), that is, 4 bytes.

11

• So, *(b+i) is the address of the 0th element of the ith
row.

• Thus, *(b+i)+j is the address of the jth element of the
ith row.
– That is, same as &b[i][j].

12

*(b+i)+j is equivalent to &b[i][j]

Some Equivalences

 *(b + i) + j

((b + i) + j)

 b[i] + j

 *(b[i] + j)

 (*(b + i))[j]

&b[i][j]

b[i][j]

&b[i][j]

b[i][j]

b[i][j]

13

Calculation of the address of b[i][j]

 int b[3][5]

• The C compiler can calculate the address of the jth
element of the ith row using the following formula:
 b + k (5i + j)
where k = sizeof(int).

• The compiler needs the following:
– Value of row and column indices
– The number of columns
– The size of the data type.

14

Passing 2-D Arrays to functions 
(recap)

15

1-D Array and Formal Parameter

• Consider the declaration: int a[10];

– The array name ‘a’ is a constant pointer.

– The formal parameter: int x[] or int *x is a pointer
variable of the corresponding type, where the address of
an array location is copied into the function.

 void sort (int n, int x[]);

 void sort (int n, int *x);

– These two information are sufficient for the compiler to
calculate the address of x[i].

16

Formal parameter for 2-D Array

• Consider the declaration: int b[ROW][COL];
– The C compiler needs the following information to calculate the

address of b[i][j] (given i and j):
• Starting address ‘b’
• The data type of the array elements, that is, ‘int’
• The number of columns ‘COL’

• Example:
 void matadd (int row, int col, int a[][10],
 int b[][10], int c[][10]);

17

18

An example

#include <stdio.h>

void transpose (int x[][3],
 int n)
{
 int p, q, t;

 for (p=0; p<n; p++)
 for (q=p; q<n; q++)
 {
 t = x[p][q];
 x[p][q] = x[q][p];
 x[q][p] = t;
 }
}

main()
{
 int a[3][3], p, q;

 for (p=0; p<3; p++)
 for (q=0; q<3; q++)
 scanf (”%d”, &a[p][q]);
 transpose (a, 3);
 for (p=0; p<3; p++)
 {
 printf (”\n”);
 for (q=0; q<3; q++)

 printf (”%d ”, a[p][q]);
 }
}

Dynamically Allocating 2-D Arrays

19

You may recall ….

• We have discussed earlier the issue of dynamically
allocating space for 1-D arrays.
– Using malloc()library function.

• Pros and cons of this approach:
– The space gets allocated in global data area called heap (not

on the stack), and hence does not evaporate at the end of
function call.

– The conventional method allocates space in the stack as part
of the activation record, and so is not available across
function calls.

20

Looking back at pointer arithmetic
 int *p, (*q)[5], *r[3], **s;

• Variable ‘p’ can be used to point to an integer.
 Thus, p+i will mean: p + i * sizeof(int)

• Variable ‘q’ can be used to point to an integer array of size 5.
 Hence, q+i will mean: q + i*5*sizeof(int)

• ‘r’ is not a variable but a constant pointer (name of an array, each
element of the array is an int*).

 So, r+i will mean: r + i * sizeof(int*)

• Variable ‘s’ can be used to point to a location of type int* .
 Thus, s+i will mean: s + i*sizeof(int*)

21

Some typical values ….

sizeof(int): 4

sizeof(int *): 8

sizeof(int [5]): 20

sizeof(int (*)[5]): 8

sizeof(int **): 8

22

How was 1-D array dynamically allocated?

• Sample code segment:
 int *p, n, i;
 scanf (”%d”, &n);
 p = (int *) malloc (n * sizeof(int));

• Array elements can be accessed equivalently
as:
 p[i] = 20;
 *(p+i) = 20;

23

Methods to allocate space for 2-D array

1. Variable number of rows, fixed number of
columns

2. Variable number of columns, but fixed
number of rows

3. Both number of rows and columns variable

24

Dynamically Allocating 2-D Arrays 

Variable number of rows 
Fixed number of columns

25

1:: Allocating space for 2-D array n×5

• We can use a pointer of type (*q)[5] to
allocate space for the array of n rows and 5
columns.

int (*q)[5], n;
printf(”Enter nos. of rows:”);
scanf(”%d”, &n);
q = (int (*)[5]) malloc(n*5*sizeof(int));

26

27

q

Dynamically allocated
memory

q[0][0] q[1][0] q[2][0]

#include <stdio.h>
#include <stdlib.h>
int main()
{
 int (*q)[5],rows,i,j;
 printf("Enter the number of Rows: ") ;
 scanf("%d", &rows);

 q = (int (*)[5]) malloc (rows*5*sizeof(int));

 for(i=0; i<rows; ++i)
 for(j=0; j<5; ++j)
 q[i][j]=2*i+3*j;
 for(i=0; i<rows; ++i) {
 for(j=0; j<5; ++j)
 printf("%d ", q[i][j]);
 printf("\n");
 }
 return 0;
}

28

Enter the number of Rows: 3
0 3 6 9 12
2 5 8 11 14
4 7 10 13 16

• Some observations:
– ‘q’ points to the 0th row of a 5-element array
– ‘q+i’ points to the ith row of a 5-element array
– *q is the address of q[0][0], that is, &q[0][0]
– *q+j is the address of q[0][j], that is, &q[0][j]
– *(q+i)+j is address of q[i][j], that is, &q[i][j]
– **q is q[0][0]
– *(*q+j) is q[0][j]
– *(*(q+i)+j) is q[i][j]

29

Dynamically Allocating 2-D Arrays 

Fixed number of rows 
Variable number of columns

30

2:: Allocating space for 2-D array 3×m

31

• We can use a pointer array of size 3, where
the ith element of the array will point to the
ith row of length m.
– Possible to have different number of elements in

different rows.
int *r[3], i, c;
printf(”Enter nos. of columns:”);
scanf(”%d”, &c);
for (i=0;i<3;i++)
 r[i] = (int *) malloc (c*sizeof(int));

32

Dynamically
allocated
memory

r[0]

r[1]

r[2]

Statically allocated
pointer array

#include <stdio.h>
#include <stdlib.h>
int main()
{
 int *r[3], i, j, col;
 for(i=0; i<3; ++i) {
 col = 2 * (i+1);
 r[i] = (int *) malloc (col*sizeof(int));
 for(j=0; j<col; ++j)
 r[i][j] = i + j;
 }
 for(i=0; i<3; ++i) {
 col = 2 * (i+1);
 for(j=0; j<col; ++j)
 printf("%d ", r[i][j]);
 printf("\n");
 }
 return 0;
}

33

0 1
1 2 3 4
2 3 4 5 6 7

• Some observations:
– r[i] is the ith pointer, which stores the address

of the 0th element of the ith row.

– So, r[i]+j is the address of the jth element of
the ith row.

– *(r[i]+j), same as r[i][j], is the jth
element of the ith row.

34

Dynamically Allocating 2-D Arrays 

Both number of rows and columns
are variable

35

3: Dynamic allocation of r×c array

• We can allocate a 2-D array of variable
number of rows and columns, where both the
number of rows and the number of columns
as inputs.

int **s, r, c;
printf(”Enter nos. of rows, columns:”);
scanf(”%d %d”, &r, &c);
s = (int **) malloc(r * sizeof(int *));
for (i=0;i<r;i++)
 s[i] = (int *) malloc(c * sizeof(int));

36

37

Dynamically allocated memory

s Static allocation

s[0]

s[1]

s[2]

:

#include <stdio.h>
#include <stdlib.h>
int main()
{
 int **s, row, column, i, j;
 printf("Enter Row & Column:\n”);
 scanf("%d %d", &row, &column);
 s = (int **) malloc(row*sizeof(int *));
 for(i=0; i<row; ++i) {
 s[i] = (int *) malloc(column*sizeof(int));
 for(j=0; j<column; ++j)
 s[i][j] = i+j ;
 }
 for(i=0; i<row; ++i) {
 for(j=0; j<column; ++j)
 printf("%d ", s[i][j]);
 printf("\n”);
 }
 return 0;
}

38

Enter Row and Column:
3 5
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6

• Some observations:
– s+i is the address of the ith element of the

pointer array.
– *(s+i), which is the same as s[i], is the ith

element of the pointer array that stores the
address of the 0th element of the ith row.

– s[i]+j is the address of the jth element of the
ith row.

– *(s[i]+j), which is the same as s[i][j], is
the jth element of the ith row.

39

Example with 2-D Array

#include <stdio.h>
#include <stdlib.h>

int **allocate (int h, int w)
 {
 int **p;
 int i, j;

 p = (int **) calloc (h, sizeof(int *));
 for (i=0;i<h;i++)
 p[i] = (int *) calloc (w,sizeof(int));
 return(p);
 }

40

Allocate array
of pointers

Allocate array of
integers for each row

void read_data (int **p, int h, int w)
 {
 int i, j;
 for (i=0;i<h;i++)
 for (j=0;j<w;j++)
 scanf ("%d", &p[i][j]);
 }

void print_data (int **p, int h, int w)
 {
 int i, j;
 for (i=0;i<h;i++)
 {
 for (j=0;j<w;j++)
 printf ("%5d ", p[i][j]);
 printf ("\n");
 }
}

41

Elements accessed
like 2-D array elements.

main()
{
 int **p;
 int M, N;

 printf ("Give M and N \n");
 scanf ("%d%d", &M, &N);
 p = allocate (M, N);
 read_data (p, M, N);
 printf ("\nThe array read as \n");
 print_data (p, M, N);
}

42

Give M and N
3 3
1 2 3
4 5 6
7 8 9
The array read as
 1 2 3
 4 5 6
 7 8 9

