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Concept of pointer to pointer

• A pointer stores the memory address of a 
variable. 

• The pointer itself is a variable, and is stored 
in memory. 

• We can define a pointer to pointer, to store 
the memory address of a pointer variable.
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Example 1
#include <stdio.h> 
main() 
{ 

      int var;     int *ptr;     int **pptr;  
   var = 3000;  
   ptr = &var;  // Points to "var" 
   pptr = &ptr;  // Points to "ptr" 
   printf ("Value of var = %d \n", var );  
   printf ("Value available at *ptr = %d \n", *ptr );   
   printf ("Value available at **pptr = %d \n", **pptr); 
}
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Output 
Value of var = 3000  
Value available at *ptr = 3000  
Value available at **pptr = 3000



Example 2
#include <stdio.h> 
main() 
{ 
      int var;     int *ptr;     int **pptr;  
      var = 3000;  
      ptr = &var;  
      pptr = &ptr;  
      printf ("Address of var = %u \n", &var );  
      printf ("Value of ptr = %u \n", ptr );    
      printf ("Value stored at pptr = %u \n", *pptr); 
}
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Output 
Address of var = 3974241144 
Value of ptr = 3974241144 
Value stored at pptr = 3974241144



What does array name mean in 2-D array?

       int  a[10], b[5][3]; 

• We know that ‘a’ is a constant pointer whose value 
is the address of the 0th element of the array 
a[10].  

• Similarly, a+i is the address of the ith element of 
the array. 

• What is the meaning of ‘b’ and what is its 
arithmetic? 
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How is a 2-D array is stored in memory?

• Starting from a given memory location, the elements 
are stored row-wise in consecutive memory locations. 

x: starting address of the array in memory 
c: number of columns 
k: number of bytes allocated per array element 

Element  b[i][j] :: allocated memory location at     
                                           address  x+(i*c+j)*k

b[0][0] b[0][1] b[0]2] …..      b[1][0] b[1][1] b[1][2] ……       b[2][0] b[2][1] b[2][2] …….. 

Row 0 Row 1 Row 2

int b[5][3];



Arithmetic of ‘b’

• b is the starting address of the 0th row 
• b+1 is the starting address of the 1th row 
• b+2 is the starting address of the 2th row 

• In general, b+i represents the starting address of the 
ith row 

• The size of a row will be: c × sizeof(int) bytes, 
where c is the number of columns.
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b[0][0] b[0][1] b[0]2] …..      b[1][0] b[1][1] b[1][2] ……       b[2][0] b[2][1] b[2][2] …….. 

Row 0 Row 1 Row 2

int b[5][3];



Example 3

#include <stdio.h> 
int main() 
{ 
   int a[10], b[3][5]; 
   printf (”a:   %u \t   b:   %u \n”, a, b); 
   printf (”a+1: %u \t b+1: %u \n”, a+1, b+1);  
   printf (”a+2: %u \t b+2: %u \n”, a+2, b+2);  
   printf (”a+3: %u \t b+3: %u \n”, a+3, b+3); 
}
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Output 
a:   3217738332  b:   3217738272 
a+1: 3217738336  b+1: 3217738292 
a+2: 3217738340  b+2: 3217738312 
a+3: 3217738344  b+3: 3217738332



Type of ‘b’

• ‘b’ is a pointer constant of type int[][5], that 
is, a contiguous row of five integers. 

• If such a pointer is incremented by one, it 
increases by 5×sizeof(int) bytes.
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int b[3][5];



Arithmetic of *(b+i)

• If ‘b’ is the address of the 0th row, *b is the 0th row 
itself. 
– A row may be viewed as a 1-D array, so *b is the 

starting address of this 1-D array, i.e. address of the 
0th element of the 0th row. 

• Similarly, b+i is the address of the ith row, *(b+i)is 
the ith row. 
– So *(b+i)is the address of the 0th element of the ith 

row. 

10



For the array b[3][5]

• If *b is the address of the 0th element of the 0th 
row,      *b+1 is the address of the 1th element of 
the 0th row. 

• Similarly, *b+j is the address of the jth element of 
the 0th row. 

• The difference between b+1 and b is 20 bytes, but 
the difference between *b+1 and *b is the 
sizeof(int), that is, 4 bytes.
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• So, *(b+i) is the address of the 0th element of the ith 
row. 

• Thus, *(b+i)+j is the address of the jth element of the 
ith row. 
– That is, same as &b[i][j].
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*(b+i)+j is equivalent to &b[i][j]



Some Equivalences

 *(b + i) + j 

*(*(b + i) + j) 

    b[i] + j 

  *(b[i] + j) 

 (*(b + i))[j]

&b[i][j] 

b[i][j] 

&b[i][j] 

b[i][j] 

b[i][j]
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Calculation of the address of b[i][j]

    int  b[3][5] 

• The C compiler can calculate the address of the jth 
element of the ith row using the following formula: 
  b + k (5i + j) 
where k = sizeof(int). 

• The compiler needs the following: 
– Value of row and column indices 
– The number of columns 
– The size of the data type.
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Passing 2-D Arrays to functions 
(recap)
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1-D Array and Formal Parameter

• Consider the declaration:   int a[10]; 

– The array name ‘a’ is a constant pointer. 

– The formal parameter:  int x[]  or  int *x is a pointer 
variable of the corresponding type, where the address of 
an array location is copied into the function. 

     void sort (int n, int x[]); 

     void sort (int n, int *x); 

– These two information are sufficient for the compiler to 
calculate the address of x[i].
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Formal parameter for 2-D Array

• Consider the declaration:   int b[ROW][COL]; 
– The C compiler needs the following information to calculate the 

address of b[i][j] (given i and j): 
• Starting address ‘b’ 
• The data type of the array elements, that is, ‘int’ 
• The number of columns ‘COL’ 

• Example: 
  void matadd (int row, int col, int a[][10], 
                       int b[][10], int c[][10]);
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An example

#include <stdio.h> 

void transpose (int x[][3],  
                      int n) 
{ 
   int  p, q, t; 

   for (p=0; p<n; p++) 
     for (q=p; q<n; q++) 
      { 
         t = x[p][q]; 
         x[p][q] = x[q][p]; 
         x[q][p] = t; 
       } 
}

main() 
{ 
  int a[3][3], p, q; 

  for (p=0; p<3; p++) 
    for (q=0; q<3; q++) 
      scanf (”%d”, &a[p][q]); 
  transpose (a, 3); 
  for (p=0; p<3; p++) 
  { 
    printf (”\n”); 
    for (q=0; q<3; q++) 

   printf (”%d  ”, a[p][q]); 
  } 
}



Dynamically Allocating 2-D Arrays
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You may recall ….

• We have discussed earlier the issue of dynamically 
allocating space for 1-D arrays. 
– Using  malloc()library function. 

• Pros and cons of this approach: 
– The space gets allocated in global data area called heap (not 

on the stack), and hence does not evaporate at the end of 
function call. 

– The conventional method allocates space in the stack as part 
of the activation record, and so is not available across 
function calls.
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Looking back at pointer arithmetic
   int  *p, (*q)[5], *r[3], **s; 

• Variable ‘p’ can be used to point to an integer. 
       Thus, p+i will mean:     p + i * sizeof(int) 

• Variable ‘q’ can be used to point to an integer array of size 5.  
      Hence, q+i will mean:  q + i*5*sizeof(int) 

• ‘r’ is not a variable but a constant pointer (name of an array, each 
element of the array is an int*).  

      So, r+i will mean:         r + i * sizeof(int*) 

• Variable ‘s’ can be used to point to a location of type   int* .  
      Thus, s+i will mean:   s + i*sizeof(int*)

21



Some typical values ….

sizeof(int):   4 

sizeof(int *):   8 

sizeof(int [5]):  20 

sizeof(int (*)[5]):  8 

sizeof(int **):  8
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How was 1-D array dynamically allocated?

• Sample code segment: 
  int *p, n, i; 
  scanf (”%d”, &n); 
  p = (int *) malloc (n * sizeof(int)); 

• Array elements can be accessed equivalently 
as: 
  p[i] = 20; 
  *(p+i) = 20;
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Methods to allocate space for 2-D array

1. Variable number of rows, fixed number of 
columns 

2. Variable number of columns, but fixed 
number of rows 

3. Both number of rows and columns variable
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Dynamically Allocating 2-D Arrays 

Variable number of rows 
Fixed number of columns
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1:: Allocating space for 2-D array n×5

• We can use a pointer of type (*q)[5] to 
allocate space for the array of n rows and 5 
columns. 

int  (*q)[5], n; 
printf(”Enter nos. of rows:”); 
scanf(”%d”, &n); 
q = (int (*)[5]) malloc(n*5*sizeof(int));
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q

Dynamically allocated 
memory

q[0][0] q[1][0] q[2][0]



#include <stdio.h> 
#include <stdlib.h> 
int main() 
{ 
   int (*q)[5],rows,i,j; 
   printf("Enter the number of Rows: ") ; 
     scanf("%d", &rows); 

   q = (int (*)[5]) malloc (rows*5*sizeof(int)); 

   for(i=0; i<rows; ++i) 
     for(j=0; j<5; ++j)  
         q[i][j]=2*i+3*j; 
   for(i=0; i<rows; ++i) { 
     for(j=0; j<5; ++j) 
         printf("%d ", q[i][j]);  
     printf("\n"); 
   } 
   return 0; 
}
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Enter the number of Rows: 3 
0 3 6 9 12 
2 5 8 11 14 
4 7 10 13 16



• Some observations: 
– ‘q’ points to the 0th row of a 5-element array 
– ‘q+i’ points to the ith row of a 5-element array 
– *q is the address of q[0][0], that is, &q[0][0] 
– *q+j is the address of q[0][j], that is, &q[0][j] 
– *(q+i)+j is address of q[i][j], that is, &q[i][j] 
– **q  is  q[0][0] 
– *(*q+j) is  q[0][j] 
– *(*(q+i)+j) is  q[i][j]
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Dynamically Allocating 2-D Arrays 

Fixed number of rows 
Variable number of columns
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2:: Allocating space for 2-D array 3×m
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• We can use a pointer array of size 3, where 
the ith element of the array will point to the 
ith row of length m. 
– Possible to have different number of elements in 

different rows. 
int  *r[3], i, c; 
printf(”Enter nos. of columns:”); 
scanf(”%d”, &c); 
for (i=0;i<3;i++) 
  r[i] = (int *) malloc (c*sizeof(int));
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Dynamically 
allocated  
memory

r[0]

r[1]

r[2]

Statically allocated  
pointer array



#include <stdio.h> 
#include <stdlib.h> 
int main() 
{ 
  int *r[3], i, j, col; 
  for(i=0; i<3; ++i) { 
    col = 2 * (i+1); 
    r[i] = (int *) malloc (col*sizeof(int)); 
    for(j=0; j<col; ++j)  
      r[i][j] = i + j; 
  } 
 for(i=0; i<3; ++i) { 
    col = 2 * (i+1); 
    for(j=0; j<col; ++j) 
       printf("%d ", r[i][j]);     
    printf("\n"); 
  } 
  return 0; 
}
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0 1 
1 2 3 4 
2 3 4 5 6 7



• Some observations: 
– r[i] is the ith pointer, which stores the address 

of the 0th element of the ith row. 

– So, r[i]+j is the address of the jth element of 
the ith row. 

– *(r[i]+j), same as r[i][j], is the jth 
element of the ith row.
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Dynamically Allocating 2-D Arrays 

Both number of rows and columns 
are variable
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3: Dynamic allocation of r×c array

• We can allocate a 2-D array of variable 
number of rows and columns, where both the 
number of rows and the number of columns 
as inputs. 

int  **s, r, c; 
printf(”Enter nos. of rows, columns:”); 
scanf(”%d %d”, &r, &c); 
s = (int **) malloc(r * sizeof(int *)); 
for (i=0;i<r;i++) 
  s[i] = (int *) malloc(c * sizeof(int));
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Dynamically allocated memory

s Static allocation

s[0]

s[1]

s[2]

:



#include <stdio.h> 
#include <stdlib.h> 
int main() 
{ 
  int **s, row, column, i, j; 
  printf("Enter Row & Column:\n”); 
    scanf("%d %d", &row, &column); 
  s = (int **) malloc(row*sizeof(int *)); 
  for(i=0; i<row; ++i) { 
    s[i] = (int *) malloc(column*sizeof(int)); 
    for(j=0; j<column; ++j)  
      s[i][j] = i+j ; 
  } 
 for(i=0; i<row; ++i) { 
    for(j=0; j<column; ++j) 
      printf("%d ", s[i][j]); 
    printf("\n”); 
  } 
  return 0; 
}
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Enter Row and Column: 
3 5 
0 1 2 3 4 
1 2 3 4 5 
2 3 4 5 6



• Some observations: 
– s+i is the address of the ith element of the 

pointer array. 
– *(s+i), which is the same as s[i], is the ith 

element of the pointer array that stores the 
address of the 0th element of the ith row. 

– s[i]+j is the address of the jth element of the 
ith row. 

– *(s[i]+j), which is the same as s[i][j], is 
the jth element of the ith row.
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Example with 2-D Array

#include <stdio.h> 
#include <stdlib.h> 

int **allocate (int h, int w) 
    { 
      int **p; 
      int i, j;   
    
      p = (int **) calloc (h, sizeof(int *) ); 
      for (i=0;i<h;i++) 
        p[i] = (int *) calloc (w,sizeof(int)); 
      return(p); 
    }
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Allocate array 
of pointers

Allocate array of 
integers for each row



void read_data (int **p, int h, int w) 
  { 
      int i, j; 
      for (i=0;i<h;i++) 
        for (j=0;j<w;j++) 
          scanf ("%d", &p[i][j]); 
  } 

void print_data (int **p, int h, int w) 
  { 
     int i, j; 
      for (i=0;i<h;i++) 
      { 
      for (j=0;j<w;j++) 
        printf ("%5d ", p[i][j]); 
       printf ("\n"); 
      } 
}
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Elements accessed 
like 2-D array elements. 



main() 
{ 
   int **p; 
   int M, N; 

   printf ("Give M and N \n"); 
   scanf ("%d%d", &M, &N); 
   p = allocate (M, N); 
   read_data (p, M, N); 
   printf ("\nThe array read as \n"); 
   print_data (p, M, N); 
}
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Give M and N  
3 3 
1 2 3 
4 5 6 
7 8 9 
The array read as  
    1     2     3  
    4     5     6  
    7     8     9 


