Pointers in C

Palash Dey

Department of Computer Science & Engg.

Indian Institute of Technology
Kharagpur

Slides credit: Prof. Indranil Sen Gupta

Introduction

e A pointer is a variable that represents the
location (rather than the value) of a data
item.

e They have a nhumber of useful applications.

- Enables us to access a variable that is defined
outside the function.

Can be used to pass information back and forth
between a function and its reference point.

- More efficient in handling data tables.
Reduces the length and complexity of a program.

Basic Concept

e In memory, every data item occupies one or
more contiguous memory cells (bytes).

- The number of bytes required to store a data item
depends on its type (char, int, float, double, etc.).

e Whenever we declare a variable, the system
allocates memory location(s) for the variable.

- Since every byte in memory has a unique address,
this location will also have its own (unique)
address.

Contd.

e Consider the statement
int xyz = 50;
- This statement instructs the compiler to
allocate a location for the integer variable xyz,
and put the value 50 in that location.

- Suppose that the address location chosen is
1380.

Xyz > variable
50 > value

1380 - address

Contd.

e During execution, the system always
associates the name xyz with the address
1380.

- The value 50 can be accessed by using either
the name xyz or the address 1380.

e Since memory addresses are simply
numbers, they can be assighed to some
variables which can be stored in memory.

- Such variables that hold memory addresses are
called pointers.

- Since a pointer is a variable, its value is also
stored in some memory location.

Contd.

e Suppose we assign the address of xyz to a

pointer variable p.
- p is said to point to the variable xyz.

Variable Value Address
Xyz 50 1380 int xyz=50 :
p 1380 2545

int *p;

p = &xyz;

Accessing the Address of a Variable

e The address of a variable can be determined
using the ‘&’ operator.
- The operator ‘&’ immediately preceding a variable
returns the address of the variable.

o Example:
P = &xXyz;
- The address of xyz (1380) is assigned to p.

e The ‘&’ operator can be used only with a

simple variable or an array element.
&distance
&x[0]
&x[i-2]

Contd.

e Following usages are illegal:

&235 -- Pointing at a constant.
int arr[20];
&arr; -- Pointing at array name.

& (a+b) -- Pointing at expression.

Example

#include <stdio.h>
main ()
{
int a float b, c; double d; char ch;
a = 10; b=2.5;,; ¢c=12.36; d = 12345.66; ch = "A’;

printf (”%d is stored in location %u \n”, a, &a) ;
printf (”%f is stored in location %u \n”, b, &b) ;
printf (”%f is stored in location %u \n”, ¢, &c) ;
printf (”%1ld is stored in location %u \n”, d, &d) ;
printf (”%c is stored in location %u \n”, ch, &ch) ;

Output:
10 is stored in location 3221224908

2.500000 is stored in location 3221224904
12.360000 is stored in location 3221224900
12345.660000 is stored in location 3221224892
A is stored in location 3221224891

Pointer Declarations

Pointer variables must be declared before we
use them.

General form:
data type *pointer name;

Three things are specified in the above

declaration:
e The asterisk (*) tells that the variable

pointer_name is a pointer variable.
e pointer_name needs a memory location.

e pointer_name points to a variable of type
data_type.

10

Contd.

o Example:
int *count;
float *speed;
e Once a pointer variable has been declared,
it can be made to point to a variable using

an assignment statement like:
int *p, xyz;

P = &xXyz;
- This is called pointer initialization.

11

Remember ...

Pointer variables must always point to a data item of
the same type.

float X;
int *p;
P = &X; - will result in erroneous output

12

Accessing a Variable Through its Pointer

e Once a pointer has been assignhed the
address of a variable, the value of the
variable can be accessed using the
indirection operator (*).

int a, b;
: b
int *p; | Equivalent to

p = &a;
b

*p;

13

Example 1

#include

main ()

{
int
int
int

a

p =
b =

printf

<stdio.h>

4 * (c + 5V ;

&C;

4 * (*p + 5) ;
(“a=%d b=%d \n”,

a, b);

Equivalent

a=40 b=40

14

Output:

Example 2 10 is stored in location 3221224908

10 is stored in location 3221224908

#include <stdio.h> |10 js stored in location 3221224908
main () 10 is stored in location 3221224908

{
int x, y;
int “*ptr;

x = 10 ;
ptr = &x ;
y = *ptr ;
printf (”3d
printf (”%d
printf (”%d
printf (%“3d
printf (“%u
printf (“%d
*ptr = 25;
printf

is
is
is
is
is
is

(” \nNow

3221224908 is stored in location 3221224900
10 is stored in location 3221224904

Now x = 25

stored in location %u \n”, x, &x) ;

stored in location %u \n”, *&x, &x) ;

stored in location %u \n”, *ptr, ptr) ;

stored in location %u \n”, vy, &*ptr) ;

stored in location %u \n”, ptr, &ptr) ;

stored in location %u \n”, vy, &y) ;

x = %d \n”, x); |Address of x: 3221224908
Address of y: 3221224904

3221224900

Address of ptr:

Pointer Expressions

e Like other variables, pointer variables can be
used in expressions.

e If p1 and p2 are two pointers, the following
statements are valid:
sum = *pl + *p2;
pro *pl * *p2;

d =
prod = (*pl) * (*p2);

*pl = *pl + 2;

x = *pl / *p2 + 5; - *pl can appear on
the left hand side

16

Contd.

« What are allowed in C?
- Add an integer to a pointer.
- Subtract an integer from a pointer.
- Subtract one pointer from another (related).

e If p1 and p2 are both pointers to the same
array, then p2-p1 gives the number of
elements between p1 and p2.

17

e What are not allowed?

- Add two pointers.
pl = pl + p2;

- Multiply / divide a pointer in an expression.
pl =p2 / 5;
pl = pl - p2 * 10;

18

Scale Factor

e We have seen that an integer value can be added to or
subtracted from a pointer variable.

int *pl, *p2;
int i, j;

pl =pl + 1;
p2 = pl + j;
p2++;

p2 = p2 - (i + j);

- In reality, it is not the integer value which is added/
subtracted, but rather the scale factor times the

value.

19

Contd.

Data Type Scale Factor
char 1
int 4.
float 4
double 8

- If p1 is an integer pointer, then
pl1++

will increment the value of p1 by 4.

20

e Note:
- The exact scale factor may vary from one
machine to another.
- Can be found out using the sizeof function.
- Syntax:
sizeof (data type)

21

Example: to find the scale factors

#include

main ()

{
printf
printf
printf
printf

<stdio.h>

("No. of bytes
("No. of bytes
("No. of bytes
("No. of bytes

occupied by int is %d \n”,
occupied by float is %d \n”,
occupied by double is %d \n”,
occupied by char is %d \n”,

sizeof (int)) ;
sizeof (float)) ;
sizeof (double)) ;
sizeof (char)) ;

Output:

Number
Number
Number
Number

of bytes
of bytes
of bytes
of bytes

occupied by int is 4
occupied by float is
occupied by double is
occupied by char 1is

4
8
1

22

Pointers and Arrays

23

Pointers and Arrays

e When an array is declared,

- The compiler allocates a base address and
sufficient amount of storage to contain all the
elements of the array in contiguous memory
locations.

- The base address is the location of the first
element (index 0) of the array.

- The compiler also defines the array name as a
constant pointer to the first element.

24

Example

e Consider the declaration:

int x[5]

= {1,

2,

3,

4,

5},

- Suppose that the base address of x is 2500, and
each integer requires 4 bytes.

Element

X

X X X X
BWN

0

Value Address

A ON-

2500
2504
2508
2512
2516

25

Contd.

Both x and &x[0] have the value 2500.

p =x; and p = &x[0]; are equivalent.

- We can access successive values of x by using
p++ or p—- to move from one element to

another.

e Relationship between p and x:
p = &x[0] = 2500
p+1 = &x[1] = 2504
12D BRI pasvere
p+3 = &x[3] = :
p+d = &x[4] = 2516 value of x[i]

Example: function to find average

#include <stdio.h>
main ()

{
int x[100], k, n;

scanf (”%d”, &n);

for (k=0; k<n; k++)

scanf (”%d”, &x[k]):;

printf (”\nAverage is %£”
avg (x, n));

4

float avg (array, size)
int array|[], size;

{
int *p, i , sum = 0;

p = array;

for (i=0; i<size; i++)
sum = sum + * (p+i) ;

return ((float) sum / size) ;

27

Pointers with 2-D arrays

TO BE DISCUSSED LATER

28

Pointers and Structures

29

Structures Revisited

e Recall that a structure can be declared as:

struct stud {
int roll;
char dept code[25];
float cgpa;
};

struct stud a, b, c;

e And the individual structure elements can

be accessed as:
a.roll , b.roll , c.cgpa

Arrays of Structures

e We can define an array of structure records
as

struct stud class[100];

e The structure elements of the individual
records can be accessed as:

class[i] .roll

class[20] .dept code
class[k++] .cgpa

31

Pointers and Structures

e You may recall that the name of an array
stands for the address of its zero-th

element.

- Also true for the names of arrays of structure

variables.

e Consider the declaration:

struct stud {

int roll;

char dept code[25];
float cgpa;
class[100], “*ptr ;

32

- The name class represents the address of the
zero-th element of the structure array.

- ptr is a pointer to data objects of the type struct
stud.

e The assignment
ptr = class;

will assign the address of class[0] to ptr.

e When the pointer ptr is incremented by one (ptr+
+) :
- The value of ptr is actually increased by
sizeof (stud).

- It is made to point to the next record.

33

e Once ptr points to a structure variable, the
members can be accessed as:

ptr->roll
ptr->dept code
ptr->cgpa

- The symbol “-~>" is called the arrow operator.

- ptr->roll and (*ptr).roll mean the
same thing.

34

A Warning

e When using structure pointers, we should take
care of operator precedence.

- Member operator “.” has higher precedence than

(% 22/

ptr -> roll and (*ptr).roll mean the same thing.
*ptr.roll will lead to error.

- The operator “->” enjoys the highest priority
among operators.
++ptr -> roll will increment roll, not ptr.
(++ptr) —> roll will do the intended thing.

35

Example: complex number addition

#include <stdio.h>
typedef struct ({
float re;
float im;
} complex;

.im) ;

main ()
{
complex a, b, c;
scanf ("%f %f”, &a.re, &a
scanf (”"%f %$f”, &b.re, &b.im);
c = add (a, b) ;
printf (”“\n %f %f”, c,re, c.im);

complex add (complex x,
complex y)

complex ¢t;

t.re = x.re + y.re ;

t.im X.im + y.im ;

return (t) ;

36

Example: Alternative way using pointers

#include <stdio.h>
typedef struct {
float re;
float im;
} complex;

main ()

{
complex a, b, c;
scanf (”"%f %f”, &a.re, &a.im);
scanf (”"%f %f”, &b.re, &b.im);
add (&a, &b, &c) ;
printf (”“\n %f %f£”, c,re, c.im);

void add (complex* x, complex* vy,
complex* t)

{
t->re = x->re + y->re;
t->im

x->im + y->im;

37

