
1

Pointers in C

Palash Dey
Department of Computer Science & Engg.

Indian Institute of Technology
Kharagpur

Slides credit: Prof. Indranil Sen Gupta

2

Introduction

• A pointer is a variable that represents the
location (rather than the value) of a data
item.

• They have a number of useful applications.
– Enables us to access a variable that is defined

outside the function.
– Can be used to pass information back and forth

between a function and its reference point.
– More efficient in handling data tables.
– Reduces the length and complexity of a program.

3

Basic Concept

• In memory, every data item occupies one or
more contiguous memory cells (bytes).
– The number of bytes required to store a data item

depends on its type (char, int, float, double, etc.).

• Whenever we declare a variable, the system
allocates memory location(s) for the variable.
– Since every byte in memory has a unique address,

this location will also have its own (unique)
address.

4

Contd.

• Consider the statement
 int xyz = 50;
– This statement instructs the compiler to

allocate a location for the integer variable xyz,
and put the value 50 in that location.

– Suppose that the address location chosen is
1380.

xyz ! variable

50 ! value

1380 ! address

5

Contd.

• During execution, the system always
associates the name xyz with the address
1380.
– The value 50 can be accessed by using either

the name xyz or the address 1380.
• Since memory addresses are simply

numbers, they can be assigned to some
variables which can be stored in memory.
– Such variables that hold memory addresses are

called pointers.
– Since a pointer is a variable, its value is also

stored in some memory location.

6

Contd.

• Suppose we assign the address of xyz to a
pointer variable p.
– p is said to point to the variable xyz.

Variable Value Address

 xyz 50 1380

 p 1380 2545
int xyz=50;

int *p;

p = &xyz;

7

Accessing the Address of a Variable

• The address of a variable can be determined
using the ‘&’ operator.
– The operator ‘&’ immediately preceding a variable

returns the address of the variable.
• Example:

 p = &xyz;
– The address of xyz (1380) is assigned to p.

• The ‘&’ operator can be used only with a
simple variable or an array element.
 &distance
 &x[0]
 &x[i-2]

8

Contd.

• Following usages are illegal:

 &235 -- Pointing at a constant.

 int arr[20];
 :
 &arr; -- Pointing at array name.

 &(a+b) -- Pointing at expression.

9

Example
#include <stdio.h>
main()
{
 int a; float b, c; double d; char ch;
 a = 10; b = 2.5; c = 12.36; d = 12345.66; ch = ’A’;

 printf (”%d is stored in location %u \n”, a, &a) ;
 printf (”%f is stored in location %u \n”, b, &b) ;
 printf (”%f is stored in location %u \n”, c, &c) ;
 printf (”%ld is stored in location %u \n”, d, &d) ;
 printf (”%c is stored in location %u \n”, ch, &ch) ;
}

Output:
10 is stored in location 3221224908
2.500000 is stored in location 3221224904
12.360000 is stored in location 3221224900
12345.660000 is stored in location 3221224892
A is stored in location 3221224891

10

Pointer Declarations

• Pointer variables must be declared before we
use them.

• General form:
 data_type *pointer_name;

• Three things are specified in the above
declaration:
• The asterisk (*) tells that the variable

pointer_name is a pointer variable.
• pointer_name needs a memory location.
• pointer_name points to a variable of type

data_type.

11

Contd.

• Example:
 int *count;
 float *speed;

• Once a pointer variable has been declared,
it can be made to point to a variable using
an assignment statement like:
 int *p, xyz;
 :
 p = &xyz;

– This is called pointer initialization.

12

Remember …

• Pointer variables must always point to a data item of
the same type.

float x;
int *p;
p = &x; ! will result in erroneous output

13

Accessing a Variable Through its Pointer

• Once a pointer has been assigned the
address of a variable, the value of the
variable can be accessed using the
indirection operator (*).

 int a, b;
 int *p;
 :
 p = &a;
 b = *p;

Equivalent to b = a;

14

Example 1

#include <stdio.h>
main()
{
 int a, b;
 int c = 5;
 int *p;

 a = 4 * (c + 5) ;

 p = &c;
 b = 4 * (*p + 5) ;
 printf (”a=%d b=%d \n”, a, b);
}

Equivalent

a=40 b=40

15

Example 2

#include <stdio.h>
main()
{
 int x, y;
 int *ptr;

 x = 10 ;
 ptr = &x ;
 y = *ptr ;
 printf (”%d is stored in location %u \n”, x, &x) ;
 printf (”%d is stored in location %u \n”, *&x, &x) ;
 printf (”%d is stored in location %u \n”, *ptr, ptr) ;
 printf (“%d is stored in location %u \n”, y, &*ptr) ;
 printf (“%u is stored in location %u \n”, ptr, &ptr) ;
 printf (“%d is stored in location %u \n”, y, &y) ;

 *ptr = 25;
 printf (”\nNow x = %d \n”, x);
}

Address of x: 3221224908

Address of y: 3221224904

Address of ptr: 3221224900

Output:
10 is stored in location 3221224908
10 is stored in location 3221224908
10 is stored in location 3221224908
10 is stored in location 3221224908
3221224908 is stored in location 3221224900
10 is stored in location 3221224904

Now x = 25

16

Pointer Expressions

• Like other variables, pointer variables can be
used in expressions.

• If p1 and p2 are two pointers, the following
statements are valid:
 sum = *p1 + *p2;
 prod = *p1 * *p2;
 prod = (*p1) * (*p2);
 *p1 = *p1 + 2;
 x = *p1 / *p2 + 5; *p1 can appear on

the left hand side

17

Contd.

• What are allowed in C?
– Add an integer to a pointer.
– Subtract an integer from a pointer.
– Subtract one pointer from another (related).

• If p1 and p2 are both pointers to the same
array, then p2–p1 gives the number of
elements between p1 and p2.

18

• What are not allowed?
– Add two pointers.

 p1 = p1 + p2;

– Multiply / divide a pointer in an expression.
 p1 = p2 / 5;
 p1 = p1 – p2 * 10;

19

Scale Factor

• We have seen that an integer value can be added to or
subtracted from a pointer variable.

int *p1, *p2;
int i, j;
:
p1 = p1 + 1;
p2 = p1 + j;
p2++;
p2 = p2 – (i + j);

– In reality, it is not the integer value which is added/
subtracted, but rather the scale factor times the
value.

20

Contd.

 Data Type Scale Factor
 char 1
 int 4
 float 4
 double 8

– If p1 is an integer pointer, then
 p1++
 will increment the value of p1 by 4.

21

• Note:
– The exact scale factor may vary from one

machine to another.
– Can be found out using the sizeof function.
– Syntax:

 sizeof (data_type)

22

Example: to find the scale factors
#include <stdio.h>
main()
{
 printf (”No. of bytes occupied by int is %d \n”, sizeof(int));
 printf (”No. of bytes occupied by float is %d \n”, sizeof(float));
 printf (”No. of bytes occupied by double is %d \n”, sizeof(double));
 printf (”No. of bytes occupied by char is %d \n”, sizeof(char));
}

Output:

Number of bytes occupied by int is 4
Number of bytes occupied by float is 4
Number of bytes occupied by double is 8
Number of bytes occupied by char is 1

23

Pointers and Arrays

24

Pointers and Arrays

• When an array is declared,
– The compiler allocates a base address and

sufficient amount of storage to contain all the
elements of the array in contiguous memory
locations.

– The base address is the location of the first
element (index 0) of the array.

– The compiler also defines the array name as a
constant pointer to the first element.

25

Example

• Consider the declaration:
 int x[5] = {1, 2, 3, 4, 5};

– Suppose that the base address of x is 2500, and
each integer requires 4 bytes.

 Element Value Address
 x[0] 1 2500
 x[1] 2 2504
 x[2] 3 2508
 x[3] 4 2512
 x[4] 5 2516

26

Contd.

 Both x and &x[0]have the value 2500.

 p = x; and p = &x[0]; are equivalent.
– We can access successive values of x by using
p++ or p-- to move from one element to
another.

• Relationship between p and x:
p = &x[0] = 2500
p+1 = &x[1] = 2504
p+2 = &x[2] = 2508
p+3 = &x[3] = 2512
p+4 = &x[4] = 2516

*(p+i) gives the
 value of x[i]

27

Example: function to find average

#include <stdio.h>
main()
{
 int x[100], k, n;

 scanf (”%d”, &n);

 for (k=0; k<n; k++)
 scanf (”%d”, &x[k]);

 printf (”\nAverage is %f”,
 avg (x, n));
}

float avg (array, size)
int array[], size;
{
 int *p, i , sum = 0;

 p = array;

 for (i=0; i<size; i++)
 sum = sum + *(p+i);

 return ((float) sum / size);
}

28

Pointers with 2-D arrays

TO BE DISCUSSED LATER

29

Pointers and Structures

30

Structures Revisited

• Recall that a structure can be declared as:

struct stud {
 int roll;
 char dept_code[25];
 float cgpa;
 };
struct stud a, b, c;

• And the individual structure elements can
be accessed as:

a.roll , b.roll , c.cgpa

31

Arrays of Structures

• We can define an array of structure records
as
 struct stud class[100];

• The structure elements of the individual
records can be accessed as:

 class[i].roll
 class[20].dept_code
 class[k++].cgpa

32

Pointers and Structures

• You may recall that the name of an array
stands for the address of its zero-th
element.
– Also true for the names of arrays of structure

variables.

• Consider the declaration:
struct stud {
 int roll;
 char dept_code[25];
 float cgpa;
 } class[100], *ptr ;

33

– The name class represents the address of the
zero-th element of the structure array.

– ptr is a pointer to data objects of the type struct
stud.

• The assignment
ptr = class;

 will assign the address of class[0] to ptr.
• When the pointer ptr is incremented by one (ptr+

+) :
– The value of ptr is actually increased by
sizeof(stud).

– It is made to point to the next record.

34

• Once ptr points to a structure variable, the
members can be accessed as:
 ptr–>roll
 ptr–>dept_code
 ptr–>cgpa

– The symbol “–>” is called the arrow operator.

– ptr–>roll and (*ptr).roll mean the
same thing.

35

A Warning

• When using structure pointers, we should take
care of operator precedence.
– Member operator “.” has higher precedence than

“*”.
 ptr –> roll and (*ptr).roll mean the same thing.
 *ptr.roll will lead to error.

– The operator “–>” enjoys the highest priority
among operators.

 ++ptr –> roll will increment roll, not ptr.
 (++ptr) –> roll will do the intended thing.

36

#include <stdio.h>
typedef struct {
 float re;
 float im;
 } complex;

main()
{
 complex a, b, c;
 scanf (”%f %f”, &a.re, &a.im);
 scanf (”%f %f”, &b.re, &b.im);
 c = add (a, b) ;
 printf (”\n %f %f”, c,re, c.im);
}

complex add (complex x,
 complex y)
{
 complex t;

 t.re = x.re + y.re ;
 t.im = x.im + y.im ;

 return (t) ;
}

Example: complex number addition

37

Example: Alternative way using pointers

#include <stdio.h>
typedef struct {
 float re;
 float im;
 } complex;

main()
{
 complex a, b, c;
 scanf (”%f %f”, &a.re, &a.im);
 scanf (”%f %f”, &b.re, &b.im);
 add (&a, &b, &c) ;
 printf (”\n %f %f”, c,re, c.im);
}

void add (complex* x, complex* y,
complex* t)
{
 t->re = x->re + y->re;
 t->im = x->im + y->im;
}

