Structures

Palash Dey

Department of Computer Science & Engg.

Indian Institute of Technology
Kharagpur

Slides credit: Prof. Indranil Sen Gupta

What is a Structure?

e It is a convenient tool for handling a group of
logically related data items.

- Examples:
e Student name, roll number, and marks.
e Real part and complex part of a complex number.

e This is our first look at a non-trivial data
structure.

- Helps in organizing complex data in more meaningful
way.

e The individual elements of a structure are
called members.

Programming and Data Structure 2

Defining a Structure

e A structure may be defined as:

struct tag {
member 1;

member 2;

member m;

};

— struct is the required keyword.
— tag is the name of the structure.

— member 1, member 2, ...are individual member
declarations.

Programming and Data Structure

Contd.

e The individual members can be ordinary variables,
pointers, arrays, or other structures.

- The member names within a particular
structure must be distinct from one another.

- A member name can be the same as the name
of a variable defined outside of the structure.

e Once a structure has been defined, the individual
structure-type variables can be declared as:

struct tag var 1, var 2, .., var n;

Programming and Data Structure

Example

o A structure definition:

struct student {
char name[30];
int roll number;
int total marks;
char dob[10];

};

e Defining structure variables:

struct student al, a2, a3;

N J
Y

A new data-type

Programming and Data Structure

A Compact Form

e |t is possible to combine the declaration of the
structure with that of the structure variables:

struct tag {
member 1;
member 2;

member m;
} wvar 1, var 2,., var n;

e In this form, tagis optional.

Programming and Data Structure

Equivalent Declarations

struct student

char name[30];
int roll number;
int total marks;
char dob[1l0];
al, a2, a3;

struct

char name[30];
int roll number;
int total marks;
char dob[10];

} al, a2, a3;

Programming and Data Structure

Processing a Structure

e The members of a structure are processed
individually, as separate entities.
e A structure member can be accessed as:

variable .member
where variable refers to the name of a
structure-type variable, and member refers to the
name of a member within the structure.

e Examples:

al.name, a2.name, al.roll number,
a3.dob

Programming and Data Structure

Example: Complex number addition

#include <stdio.h>
main ()

{

struct complex
{
float real;
float cmplex;
} a, b, c;

scanf ("%f $f", &a.real, &a.cmplex);
scanf ("%f Sf", &b.real, &b.cmplex)

c.real = a.real + b.real;
c.cmplex = a.cmplex + b.cmplex;
printf ("\n %f + %f j", c.real, c.cmplex);

Programming and Data Structure

Comparison of Structure Variables

e Unlike arrays, group operations can be
performed with structure variables.

- A structure variable can be directly assigned to
another structure variable of the same type.
al = az2;
e All the individual members get assigned.
- Two structure variables can be compared for
equality or inequality.
if (al == a2)...
e Compare all members and return 1 if they are equal; 0
otherwise.

Programming and Data Structure 10

Arrays of Structures

e Once a structure has been defined, we can
declare an array of structures.

struct student class[50];

- The individual members can be accessed as:
class[i] .name
class[5] .roll number

Programming and Data Structure

11

Arrays within Structures

e A structure member can be an array:

struct

{

} al,

student

char name[30];
int roll number;
int marks|[5];
char dob[1l0];
a2, a3;

e The array element within the structure can
be accessed as:

al.marks[2]

Programming and Data Structure

12

Defining data type: using typedef

e One may define a structure data-type with a single

name.

e General syntax:
typedef struct {

member-variablel;
member-variable?2;

member-variableN;
} tag;

e tagis the name of the new data-type.

Programming and Data Structure

13

typedef : An example

typedef struct ({
float real;
float imag;
} _COMPLEX;

_COMPLEX a, b, c;
__COMPLEX complexarray[100];

A new data type

Programming and Data Structure 14

Structure Initialization

e Structure variables may be initialized following
similar rules of an array. The values are provided
within the second braces separated by commas.

e An example:
_COMPLEX a={1.0,2.0}, b={-3.0,4.0};

J

a.real=1.0; a.imag=2.0;
b.real=-3.0; b.imag=4.0;

Programming and Data Structure

15

Parameter Passing in a Function

e Structure variables can be passed as parameters
like any other variables. Only the values will be
copied during function invocation.

void swap (COMPLEX a, COMPLEX Db)

{
_COMPLEX tmp;

tmp

i
(o g |

a
b

Programming and Data Structure

16

An Example

#include <stdio.h>

typedef struct {
float real;

float imag;
} COMPLEX;

void swap (COMPLEX a, COMPLEX Db)
{

_COMPLEX tmp;
tmp

a =
b = tmp;

Programming and Data Structure

17

Example:: contd.

void print (COMPLEX a)
{
printf (" (%£f, %£f) \n“, a.real, a.imag);
}
main ()
{
_COMPLEX x = {4.0,5.0}, y = {10.0,15.0};
print(x); print(y);
swap (x,y) ;
print(x); print(y);
}

Programming and Data Structure 18

e Qutput:

(4.000000, 5.000000)
(10.000000, 15.000000)
(4.000000, 5.000000)
(10.000000, 15.000000)

- No swapping takes place, since only values are
passed to the function. The original variables in
the calling function remains unchanged.

Programming and Data Structure 19

Returning structures

e Itis also possible to return structure values from a
function. The return data type of the function should
be same as the data type of the structure itself.

__COMPLEX add (_COMPLEX a, _COMPLEX Db)

{
_COMPLEX tmp;

tmp.real = a.real + b.real;
tmp.imag = a.imag + b.imag;

return (tmp) ;

Direct arithmetic operations are not possible with structure variables.

Programming and Data Structure 20

Example: Addition of two complex humbers

#include <stdio.h>

typedef struct {
float real;

float imag;
} _COMPLEX;

_COMPLEX add (COMPLEX a, _COMPLEX b)

{

_COMPLEX tmp;

a.real + b.real;
a.imag + b.imag;

tmp.real =
tmp.imag =

return (tmp) ;

int main ()
{
_COMPLEX numl, num2, sum;
scanf ("%f %f",

&numl .
scanf ("%f %f", num2.real,

&num2 .
sum = add (numl, num2);

printf ("\nSum is: $f + j
sum.real, sum.imag) ;

&numl . real,
imag) ;

imag) ;

Y,

Programming and Data Structure

21

Example: Compute perimeter of polygon

#include <stdio.h>

typedef struct ({
int sides;

float length[10];

} POLYGON;

float perimeter (POLYGON p)

{
float peri = 0.0;

int i;

for (i=0; i<p.sides; i++)
peri += p.length[i];

return (peri) ;

int main ()

{
POLYGON shape;
int k;
float peri;

scanf (”%d”, &shape.sides);
for (k=0; k<shape.sides; k++)
scanf (”"%f", &shape.length[k];

peri = perimeter (shape) ;
printf ("\nPerimeter is: %f",
peri) ;

Programming and Data Structure 22

Estimating the Size of a Structure

e The “sizeof” for a struct variable is not
always equal to the sum of the “sizeof” of
each individual member.

- Padding is added by the compiler to avoid
alignment issues.
- Padding is only added when a structure member

is followed by a member with a larger size or at
the end of the structure.

e Exact convention may vary from one
compiler to another.

Programming and Data Structure 23

(a) Example 1

#include <stdio.h>

int main ()

{
struct A {

//
int x;
//

//
double

//

Iy

printf ("Size of struct: %1d", sizeof (struct A));

return 0;

sizeof (int)

Padding of

= 4

4 bytes

sizeof (double) = 8

z,

sizeof (short int) = 2
short int y;
// Padding of 6 bytes

Here, x (int) is followed by z
(double), which is larger in size
than x. Hence padding is
required after x. Also, padding
is required at the end for data
alignment.

Size of struct: 24

Programming and Data S

(b) Example 2

#include <stdio.h>
int main()

{

struct B {

0 s Sl & G The members of the structure
b1 steeofldoib el = are sorted in decreasing order
onnee = of their sizes. Hence padding is

// sizeof(int) = 4 required only at the end.

int x;

// sizeof (short int) = 2
short int y;
// Padding of 2 bytes
};
printf ("Size of struct: %1d", sizeof (struct B));
return O;

Size of struct: 16

Programming and Data §

(c) Example 3

#include <stdio.h>
int main()

{

struct C/j e double) - g Here, y (short int) is followed
sizeof (double) = by x (int) and hence padding is
double z;

required after y. No padding is

V) selmedEes o) = 2 required at the end.

short int y;

// Padding of 2 bytes
// sizeof(int) = 4
int x;
};
printf ("Size of struct: %1d", sizeof (struct B));
return O;

z
Size of struct: 16 |

Programming and Data SII

Exercise Problems

Extend the complex humber program to include functions for
addition, subtraction, multiplication, and division.

Define a structure for representing a point in two-dimensional
Cartesian co-ordinate system.

e Write a function to compute the distance between two given
points.

e Write a function to compute the middle point of the line
segment joining two given points.

e Write a function to compute the area of a triangle, given the co-
ordinates of its three vertices.

Define a structure to represent students’ information (name, roll

number, cgpa). Read the data corresponding to N students in a

structure array, and find out the students with the highest and

lowest cgpa values.

Programming and Data Structure 27

