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What is a Structure?

• It is a convenient tool for handling a group of 
logically related data items. 
– Examples: 

• Student name, roll number, and marks. 
• Real part and complex part of a complex number. 

• This is our first look at a non-trivial data 
structure. 
– Helps in organizing complex data in more meaningful 

way. 

• The individual elements of a structure are 
called members.



• A structure may be defined as: 

   struct tag { 
               member 1; 
               member 2; 
               : 
               member m; 
            }; 

– struct is the required keyword. 
– tag is the name of the structure. 
– member 1, member 2, … are individual member 

declarations.
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Defining a Structure
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Contd.

• The individual members can be ordinary variables, 
pointers, arrays, or other structures. 
– The member names within a particular 

structure must be distinct from one another. 
– A member name can be the same as the name 

of a variable defined outside of the structure. 

• Once a structure has been defined, the individual 
structure-type variables can be declared as: 
  struct tag var_1, var_2, …, var_n;
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Example

• A structure definition: 
    struct student { 
                    char  name[30]; 
                    int  roll_number; 
                    int  total_marks; 
                    char  dob[10]; 
                 }; 

• Defining structure variables: 
    

  
     struct student  a1, a2, a3; 
                                  

A new data-type
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A Compact Form

• It is possible to combine the declaration of the 
structure with that of the structure variables: 

struct tag { 
              member 1; 
              member 2; 
              : 
              member m; 
           }  var_1, var_2,…, var_n; 

• In this form, tag is optional.
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struct student  { 
                   char  name[30]; 
                   int  roll_number; 
                   int  total_marks; 
                   char  dob[10]; 
                }  a1, a2, a3; 

struct          { 
                   char  name[30]; 
                   int  roll_number; 
                   int  total_marks; 
                   char  dob[10]; 
                 } a1, a2, a3;

Equivalent Declarations



Processing a Structure

• The members of a structure are processed 
individually, as separate entities. 

• A structure member can be accessed as: 
     variable.member 

     where variable refers to the name of a 
structure-type variable, and member refers to the 
name of a member within the structure. 

• Examples: 
 a1.name, a2.name, a1.roll_number, 
a3.dob
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Example: Complex number addition

#include  <stdio.h> 
main() 
{ 
   struct  complex   
   { 
         float  real; 
         float  cmplex; 
   }  a, b, c; 

   scanf ("%f %f", &a.real, &a.cmplex); 
   scanf ("%f %f", &b.real, &b.cmplex); 

   c.real = a.real + b.real; 
   c.cmplex = a.cmplex + b.cmplex; 
 printf ("\n %f + %f j", c.real, c.cmplex); 
}
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Comparison of Structure Variables

• Unlike arrays, group operations can be 
performed with structure variables.     
– A structure variable can be directly assigned to 

another structure variable of the same type. 
              a1 = a2; 
• All the individual members get assigned. 

– Two structure variables can be compared for 
equality or inequality. 

             if (a1 == a2)…… 
• Compare all members and return 1 if they are equal; 0 

otherwise. 
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Arrays of Structures

• Once a structure has been defined, we can 
declare an array of structures. 

    

 struct student class[50]; 

– The individual members can be accessed as: 
   class[i].name 
   class[5].roll_number



Programming and Data Structure 12

Arrays within Structures

• A structure member can be an array: 

• The array element within the structure can 
be accessed as: 
   a1.marks[2]

struct  student   
{                                 
  char  name[30]; 
  int  roll_number; 
     int  marks[5]; 
     char  dob[10]; 
}  a1, a2, a3;



• One may define a structure data-type with a single 
name. 

• General syntax: 

         

• tag is the name of the new data-type.
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typedef struct { 
                       member-variable1; 
                       member-variable2; 
                       . 
                       member-variableN; 
                    } tag;

Defining data type: using typedef
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typedef struct { 
                 float real; 
                 float imag; 
               }  _COMPLEX; 

_COMPLEX a, b, c; 
_COMPLEX complexarray[100];

typedef : An example

A new data type
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Structure Initialization

• Structure variables may be initialized following 
similar rules of an array. The values are provided 
within the second braces separated by commas. 

• An example: 
  _COMPLEX a={1.0,2.0}, b={-3.0,4.0}; 

                 
   

a.real=1.0;   a.imag=2.0; 
b.real=-3.0;  b.imag=4.0;
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void swap (_COMPLEX a, _COMPLEX b) 
 { 
    _COMPLEX tmp; 

    tmp = a; 
    a = b; 
    b = tmp; 
 }

Parameter Passing in a Function

• Structure variables can be passed as parameters 
like any other variables. Only the values will be 
copied during function invocation.
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An Example

#include <stdio.h> 

typedef struct { 
            float real; 
            float imag; 
         } _COMPLEX; 

void swap (_COMPLEX a, _COMPLEX b) 
 { 
    _COMPLEX tmp; 

    tmp = a; 
    a = b; 
    b = tmp; 
 }
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Example:: contd.

void print (_COMPLEX a) 
 { 
    printf("(%f, %f) \n“, a.real, a.imag); 
 } 

main() 
 { 
    _COMPLEX x = {4.0,5.0}, y = {10.0,15.0}; 

    print(x); print(y); 
    swap(x,y);  
    print(x); print(y); 
 }
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• Output: 

(4.000000, 5.000000) 
(10.000000, 15.000000) 
(4.000000, 5.000000) 
(10.000000, 15.000000) 

– No swapping takes place, since only values are 
passed to the function. The original variables in 
the calling function remains unchanged.
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Returning structures

• It is also possible to return structure values from a 
function. The return data type of the function should 
be same as the data type of the structure itself.

 _COMPLEX add (_COMPLEX a, _COMPLEX b) 
 { 
    _COMPLEX tmp; 

    tmp.real = a.real + b.real; 
    tmp.imag = a.imag + b.imag; 

    return(tmp); 
 }

Direct arithmetic operations are not possible with structure variables.



Example: Addition of two complex numbers
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#include <stdio.h> 

typedef struct { 
            float real; 
            float imag; 
         } _COMPLEX; 

_COMPLEX add (_COMPLEX a, _COMPLEX b) 
 { 
    _COMPLEX tmp; 

    tmp.real = a.real + b.real; 
    tmp.imag = a.imag + b.imag; 

    return(tmp); 
 }

int main() 
{ 
  _COMPLEX num1, num2, sum; 
  scanf ("%f %f", &num1.real,   
                      &num1.imag); 
  scanf ("%f %f", num2.real,  
                      &num2.imag); 

  sum = add (num1, num2); 
  printf ("\nSum is: %f + j %f", 
    sum.real, sum.imag); 

}



Example: Compute perimeter of polygon
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#include <stdio.h> 

typedef struct { 
             int sides; 
             float length[10]; 
         } POLYGON; 

float perimeter (POLYGON p) 
 { 
    float peri = 0.0; 
    int i; 

    for (i=0; i<p.sides; i++) 
      peri += p.length[i]; 

    return(peri); 
 }

int main() 
{ 
  POLYGON shape; 
  int k; 
  float peri; 

  scanf (”%d”, &shape.sides); 
  for (k=0; k<shape.sides; k++) 
    scanf (”%f", &shape.length[k]; 
   
  peri = perimeter (shape); 
  printf ("\nPerimeter is: %f", 
                             peri); 
}



Estimating the Size of a Structure

• The “sizeof” for a struct variable is not 
always equal to the sum of the “sizeof” of 
each individual member. 
– Padding is added by the compiler to avoid 

alignment issues. 
– Padding is only added when a structure member 

is followed by a member with a larger size or at 
the end of the structure. 

• Exact convention may vary from one 
compiler to another.
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(a) Example 1
#include <stdio.h>  
int main()  
{  
    struct A {  
            // sizeof(int) = 4  
        int x;  
            // Padding of 4 bytes  
            // sizeof(double) = 8  
        double z;  
            // sizeof(short int) = 2  
        short int y;  
            // Padding of 6 bytes  
    };  
    printf("Size of struct: %ld", sizeof(struct A));  
    return 0;  
} 
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Size of struct: 24

Here, x (int) is followed by z 
(double), which is larger in size 
than x. Hence padding is 
required after x. Also, padding 
is required at the end for data 
alignment.



(b) Example 2
#include <stdio.h>  
int main()  
{  
    struct B {  

            // sizeof(double) = 8  

        double z;  

            // sizeof(int) = 4  

        int x;  

            // sizeof(short int) = 2  

        short int y;  

            // Padding of 2 bytes  

    };   

    printf("Size of struct: %ld", sizeof(struct B));  

    return 0;  
} 
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Size of struct: 16

The members of the structure 
are sorted in decreasing order 
of their sizes. Hence padding is 
required only at the end.



(c) Example 3
#include <stdio.h>  
int main()  
{  
    struct C {  

            // sizeof(double) = 8  

        double z;  

            // sizeof(short int) = 2  

        short int y;  

            // Padding of 2 bytes  

            // sizeof(int) = 4  

        int x;  

    };    

    printf("Size of struct: %ld", sizeof(struct B));  

    return 0;  
} 
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Size of struct: 16

Here, y (short int) is followed 
by x (int) and hence padding is 
required after y. No padding is 
required at the end.
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Exercise Problems

1. Extend the complex number program to include functions for 
addition, subtraction, multiplication, and division. 

2. Define a structure for representing a point in two-dimensional 
Cartesian co-ordinate system. 

• Write a function to compute the distance between two given 
points. 

• Write a function to compute the middle point of the line 
segment joining two given points. 

• Write a function to compute the area of a triangle, given the co-
ordinates of its three vertices. 

3. Define a structure to represent students’ information (name, roll 
number, cgpa). Read the data corresponding to N students in a 
structure array, and find out the students with the highest and 
lowest cgpa values.


