
Structures

Palash Dey
Department of Computer Science & Engg.

Indian Institute of Technology
Kharagpur

Slides credit: Prof. Indranil Sen Gupta

Programming and Data Structure 2

What is a Structure?

• It is a convenient tool for handling a group of
logically related data items.
– Examples:

• Student name, roll number, and marks.
• Real part and complex part of a complex number.

• This is our first look at a non-trivial data
structure.
– Helps in organizing complex data in more meaningful

way.

• The individual elements of a structure are
called members.

• A structure may be defined as:

 struct tag {
 member 1;
 member 2;
 :
 member m;
 };

– struct is the required keyword.
– tag is the name of the structure.
– member 1, member 2, … are individual member

declarations.

Programming and Data Structure 3

Defining a Structure

Programming and Data Structure 4

Contd.

• The individual members can be ordinary variables,
pointers, arrays, or other structures.
– The member names within a particular

structure must be distinct from one another.
– A member name can be the same as the name

of a variable defined outside of the structure.

• Once a structure has been defined, the individual
structure-type variables can be declared as:
 struct tag var_1, var_2, …, var_n;

Programming and Data Structure 5

Example

• A structure definition:
 struct student {
 char name[30];
 int roll_number;
 int total_marks;
 char dob[10];
 };

• Defining structure variables:

 struct student a1, a2, a3;

A new data-type

Programming and Data Structure 6

A Compact Form

• It is possible to combine the declaration of the
structure with that of the structure variables:

struct tag {
 member 1;
 member 2;
 :
 member m;
 } var_1, var_2,…, var_n;

• In this form, tag is optional.

Programming and Data Structure 7

struct student {
 char name[30];
 int roll_number;
 int total_marks;
 char dob[10];
 } a1, a2, a3;

struct {
 char name[30];
 int roll_number;
 int total_marks;
 char dob[10];
 } a1, a2, a3;

Equivalent Declarations

Processing a Structure

• The members of a structure are processed
individually, as separate entities.

• A structure member can be accessed as:
 variable.member

 where variable refers to the name of a
structure-type variable, and member refers to the
name of a member within the structure.

• Examples:
 a1.name, a2.name, a1.roll_number,
a3.dob

Programming and Data Structure 8

Programming and Data Structure 9

Example: Complex number addition

#include <stdio.h>
main()
{
 struct complex
 {
 float real;
 float cmplex;
 } a, b, c;

 scanf ("%f %f", &a.real, &a.cmplex);
 scanf ("%f %f", &b.real, &b.cmplex);

 c.real = a.real + b.real;
 c.cmplex = a.cmplex + b.cmplex;
 printf ("\n %f + %f j", c.real, c.cmplex);
}

Programming and Data Structure 10

Comparison of Structure Variables

• Unlike arrays, group operations can be
performed with structure variables.
– A structure variable can be directly assigned to

another structure variable of the same type.
 a1 = a2;
• All the individual members get assigned.

– Two structure variables can be compared for
equality or inequality.

 if (a1 == a2)……
• Compare all members and return 1 if they are equal; 0

otherwise.

Programming and Data Structure 11

Arrays of Structures

• Once a structure has been defined, we can
declare an array of structures.

 struct student class[50];

– The individual members can be accessed as:
 class[i].name
 class[5].roll_number

Programming and Data Structure 12

Arrays within Structures

• A structure member can be an array:

• The array element within the structure can
be accessed as:
 a1.marks[2]

struct student
{
 char name[30];
 int roll_number;
 int marks[5];
 char dob[10];
} a1, a2, a3;

• One may define a structure data-type with a single
name.

• General syntax:

• tag is the name of the new data-type.

Programming and Data Structure 13

typedef struct {
 member-variable1;
 member-variable2;
 .
 member-variableN;
 } tag;

Defining data type: using typedef

Programming and Data Structure 14

typedef struct {
 float real;
 float imag;
 } _COMPLEX;

_COMPLEX a, b, c;
_COMPLEX complexarray[100];

typedef : An example

A new data type

Programming and Data Structure 15

Structure Initialization

• Structure variables may be initialized following
similar rules of an array. The values are provided
within the second braces separated by commas.

• An example:
 _COMPLEX a={1.0,2.0}, b={-3.0,4.0};

a.real=1.0; a.imag=2.0;
b.real=-3.0; b.imag=4.0;

Programming and Data Structure 16

void swap (_COMPLEX a, _COMPLEX b)
 {
 _COMPLEX tmp;

 tmp = a;
 a = b;
 b = tmp;
 }

Parameter Passing in a Function

• Structure variables can be passed as parameters
like any other variables. Only the values will be
copied during function invocation.

Programming and Data Structure 17

An Example

#include <stdio.h>

typedef struct {
 float real;
 float imag;
 } _COMPLEX;

void swap (_COMPLEX a, _COMPLEX b)
 {
 _COMPLEX tmp;

 tmp = a;
 a = b;
 b = tmp;
 }

Programming and Data Structure 18

Example:: contd.

void print (_COMPLEX a)
 {
 printf("(%f, %f) \n“, a.real, a.imag);
 }

main()
 {
 _COMPLEX x = {4.0,5.0}, y = {10.0,15.0};

 print(x); print(y);
 swap(x,y);
 print(x); print(y);
 }

Programming and Data Structure 19

• Output:

(4.000000, 5.000000)
(10.000000, 15.000000)
(4.000000, 5.000000)
(10.000000, 15.000000)

– No swapping takes place, since only values are
passed to the function. The original variables in
the calling function remains unchanged.

Programming and Data Structure 20

Returning structures

• It is also possible to return structure values from a
function. The return data type of the function should
be same as the data type of the structure itself.

 _COMPLEX add (_COMPLEX a, _COMPLEX b)
 {
 _COMPLEX tmp;

 tmp.real = a.real + b.real;
 tmp.imag = a.imag + b.imag;

 return(tmp);
 }

Direct arithmetic operations are not possible with structure variables.

Example: Addition of two complex numbers

Programming and Data Structure 21

#include <stdio.h>

typedef struct {
 float real;
 float imag;
 } _COMPLEX;

_COMPLEX add (_COMPLEX a, _COMPLEX b)
 {
 _COMPLEX tmp;

 tmp.real = a.real + b.real;
 tmp.imag = a.imag + b.imag;

 return(tmp);
 }

int main()
{
 _COMPLEX num1, num2, sum;
 scanf ("%f %f", &num1.real,
 &num1.imag);
 scanf ("%f %f", num2.real,
 &num2.imag);

 sum = add (num1, num2);
 printf ("\nSum is: %f + j %f",
 sum.real, sum.imag);

}

Example: Compute perimeter of polygon

Programming and Data Structure 22

#include <stdio.h>

typedef struct {
 int sides;
 float length[10];
 } POLYGON;

float perimeter (POLYGON p)
 {
 float peri = 0.0;
 int i;

 for (i=0; i<p.sides; i++)
 peri += p.length[i];

 return(peri);
 }

int main()
{
 POLYGON shape;
 int k;
 float peri;

 scanf (”%d”, &shape.sides);
 for (k=0; k<shape.sides; k++)
 scanf (”%f", &shape.length[k];

 peri = perimeter (shape);
 printf ("\nPerimeter is: %f",
 peri);
}

Estimating the Size of a Structure

• The “sizeof” for a struct variable is not
always equal to the sum of the “sizeof” of
each individual member.
– Padding is added by the compiler to avoid

alignment issues.
– Padding is only added when a structure member

is followed by a member with a larger size or at
the end of the structure.

• Exact convention may vary from one
compiler to another.

Programming and Data Structure 23

(a) Example 1
#include <stdio.h>
int main()
{
 struct A {
 // sizeof(int) = 4
 int x;
 // Padding of 4 bytes
 // sizeof(double) = 8
 double z;
 // sizeof(short int) = 2
 short int y;
 // Padding of 6 bytes
 };
 printf("Size of struct: %ld", sizeof(struct A));
 return 0;
}

Programming and Data Structure 24

Size of struct: 24

Here, x (int) is followed by z
(double), which is larger in size
than x. Hence padding is
required after x. Also, padding
is required at the end for data
alignment.

(b) Example 2
#include <stdio.h>
int main()
{
 struct B {

 // sizeof(double) = 8

 double z;

 // sizeof(int) = 4

 int x;

 // sizeof(short int) = 2

 short int y;

 // Padding of 2 bytes

 };

 printf("Size of struct: %ld", sizeof(struct B));

 return 0;
}

Programming and Data Structure 25

Size of struct: 16

The members of the structure
are sorted in decreasing order
of their sizes. Hence padding is
required only at the end.

(c) Example 3
#include <stdio.h>
int main()
{
 struct C {

 // sizeof(double) = 8

 double z;

 // sizeof(short int) = 2

 short int y;

 // Padding of 2 bytes

 // sizeof(int) = 4

 int x;

 };

 printf("Size of struct: %ld", sizeof(struct B));

 return 0;
}

Programming and Data Structure 26

Size of struct: 16

Here, y (short int) is followed
by x (int) and hence padding is
required after y. No padding is
required at the end.

Programming and Data Structure 27

Exercise Problems

1. Extend the complex number program to include functions for
addition, subtraction, multiplication, and division.

2. Define a structure for representing a point in two-dimensional
Cartesian co-ordinate system.

• Write a function to compute the distance between two given
points.

• Write a function to compute the middle point of the line
segment joining two given points.

• Write a function to compute the area of a triangle, given the co-
ordinates of its three vertices.

3. Define a structure to represent students’ information (name, roll
number, cgpa). Read the data corresponding to N students in a
structure array, and find out the students with the highest and
lowest cgpa values.

