
Character String

Palash Dey
Department of Computer Science & Engg.

Indian Institute of Technology
Kharagpur

Slides credit: Prof. Indranil Sen Gupta

What we should learn about strings

– Representation in C
– String Literals
– String Variables
– String Input/Output

• printf, scanf, gets, fgets, puts, fputs

– String Functions
• strlen, strcpy, strncpy, strcmp, strncmp, strcat,

strncat, strchr, strrchr, strstr, strspn, strcspn, strtok

– Reading from/Printing to Strings
• sprintf, sscanf

Programming and Data Structure 2

Programming and Data Structure 3

Introduction

• A string is an array of characters.
– Individual characters are stored in memory in

ASCII code.
– A string is represented as a sequence of

characters terminated by the null (‘\0’)
character.

‘\0’leH ol“Hello” ➔

String Literals

• String literal values are represented by sequences of
characters between double quotes (“)

• Examples
�ʺʺ represents empty string
�ʺhelloʺ

∀ ʺaʺ versus ‘a’
– ‘a’ is a single character value (stored in 1 byte) as the ASCII

value for the letter, a.
�ʺaʺ is an array with two characters, the first is a, the second is

the character value \0.

4Programming and Data Structure

Referring to String Literals

• String literal is an array, can refer to a single character
from the literal as a character

• Example:
 printf(”%c”, ”hello”[1]);
 outputs the character ‘e’

• During compilation, C creates space for each string
literal (number of characters in the literal + 1)

5Programming and Data Structure

Duplicate String Literals

• Each string literal in a C program is stored at a
different location.
– Even if the string literals contain the same string, they are not

equal (in the == sense)

• Example:
 char string1[6] = ʺhelloʺ;
 char string2[6] = ʺhelloʺ;

– but string1 does not equal string2 (they are
stored in different memory locations).

6Programming and Data Structure

Programming and Data Structure 7

Declaring String Variables

• A string is declared like any other array:
 char string-name[size];

– size determines the number of characters in
string_name.

• When a character string is assigned to a character
array, it automatically appends the null character
(‘\0’) at the end of the string.
– size should be equal to the number of

characters in the string plus one.

Programming and Data Structure 8

Examples

 char name[30];
 char city[15];
 char dob[11];

• A string may be initialized at the time of
declaration.

 char city[15] = ʺCalcuttaʺ;
 char city[15] = {'C', 'a', 'l', 'c', 'u',
 't', 't', 'a’, ’\0'};
 char dob[] = ʺ12-10-1975ʺ;

Equivalent

Changing String Variables

• Cannot change string variables connected to string
constants, but can change pointer variables that are not
tied to space.

• Example:
char *str1 = ʺhelloʺ; /* str1 unchangeable */
char *str2 = ʺgoodbyeʺ; /* str2 unchangeable */

char *str3; /* Not tied to space */
str3 = str1; /* str3 points to same space as str1 */
str3 = str2;

9Programming and Data Structure

Changing String Variables (cont)

• Can change parts of a string variable:
char str1[6] = ʺhelloʺ;

str1[0] = 'y’; /* str1 is now “yello” */
str1[4] = '\0’; /* str1 is now “yell” */

• Have to stay within limits of the array.
– Responsibility of programmer.

Programming and Data Structure 10

Programming and Data Structure 11

Reading Strings from the Keyboard

• Two different cases will be considered:
– Reading words
– Reading an entire line

Programming and Data Structure 12

Reading “words”

• scanf can be used with the “%s” format specifier.
 char name[30];
 :
 scanf (ʺ%sʺ, name);

– The ampersand (&) is not required before the
variable name with ʺ%sʺ.
• Because name represents an address.

– The problem here is that the string is taken to
be up to the first white space (blank, tab,
carriage return, etc.)
• If we type ʺRupak Biswasʺ

• name will be assigned the string ʺRupakʺ

Programming and Data Structure 13

Reading a “line of text”

• In many applications, we need to read in an entire
line of text (including blank spaces).

• We can use the getchar() function for the
purpose.

Programming and Data Structure 14

char line[81], ch;
int c = 0;
:
:
do
 {
 ch = getchar();
 line[c] = ch;
 c++;
 }
while (ch != '\n');

c = c – 1;
line[c] = '\0';

Read characters until
CR (‘\n’) is
encountered

Make it a valid
string

Programming and Data Structure 15

Reading a line :: Alternate Approach

char line[81];
:
:
scanf (ʺ%[ABCDEFGHIJKLMNOPQRSTUVWXYZ]ʺ, line);

char line[81];
:
:
scanf (ʺ%[^\n]ʺ, line);

➔ Reads a string containing
uppercase characters and blank spaces

➔ Reads a string containing any
characters

More on String Input

• Edit set input %[ListofChars]
– ListofChars specifies set of characters (called scan set)

– Characters read as long as character falls in scan set

– Stops when first non scan set character encountered

– Any character may be specified except]

– Putting ^ at the start to negate the set (any character BUT
list is allowed)

• Examples:
scanf (ʺ%[−+0123456789]ʺ, Number);
scanf (ʺ%[^\n]ʺ, Line); /* read until newline char */

Programming and Data Structure 16

Programming and Data Structure 17

Writing Strings to the Screen

• We can use printf with the “%s” format
specification.

 char name[50];
 :
 :
 printf (ʺ\n %sʺ, name);

Input / Output Example

#include <stdio.h>

void main()
{
 char LastName[11];
 char FirstName[11];

 printf(ʺEnter your name (last, first): ʺ);
 scanf(ʺ%s%sʺ, LastName, FirstName);

 printf(ʺNice to meet you %s %s\nʺ, FirstName, LastName);
}

18Programming and Data Structure

String Functions

Programming and Data Structure 20

Processing Character Strings

• There exists a set of C library functions for
character string manipulation.
– strcpy :: string copy
– strlen :: string length
– strcmp :: string comparison
– strtcat :: string concatenation

• It is required to add the line
 #include <string.h>

Programming and Data Structure 21

strcpy()

• Works like a string assignment operator.
 char *strcpy (char *str1, char *str2);

– Assigns the contents of str2 to str1.
– Returns address of the destination string.

• Examples:
 strcpy (city, ʺCalcuttaʺ);

 strcpy (city, mycity);

• Warning:
– Assignment operator do not work for strings.
 city = ʺCalcutta ʺ; ➔ INVALID

Programming and Data Structure 22

strlen()

• Counts and returns the number of characters
in a string.
 int strlen (char *str);

• Example:
 len = strlen (string);

 /* Returns an integer */

–The null character (‘\0’) at the end is not counted.
–Counting ends at the first null character.

Programming and Data Structure 23

char city[15];
int n;
:
:
strcpy (city, ʺCalcuttaʺ);
n = strlen (city);

n is assigned 8

Programming and Data Structure 24

strcmp()

• Compares two character strings.
 int strcmp (char *str1, char *str2);

– Compares the two strings and returns 0 if they
are identical; non-zero otherwise.

• Examples:
 if (strcmp(city, ʺDelhiʺ) == 0)
 { …… }

 if (strcmp(city1, city2) != 0)
 { …… }

• Actually, the function returns the difference in
ASCII values of the first letter of mismatch.
– Less than 0

• If the ASCII value of the character they differ at is
smaller for str1, or str2 is longer than str1

– Greater than 0
• If the ASCII value of the character they differ at is

greater for str1, or str1 is longer than str2

– Equal to 0
• If the two strings are identical

Programming and Data Structure 25

strcmp examples:
strcmp(ʺhelloʺ, ʺhelloʺ) -- returns 0
strcmp(ʺyelloʺ, ʺhelloʺ) -- returns value > 0
strcmp(ʺHelloʺ, ʺhelloʺ) -- returns value < 0
strcmp(ʺhelloʺ, ʺhello thereʺ) -- returns value < 0
strcmp(ʺsome diffʺ, ʺsome diftʺ) -- returns value < 0

• Expression for determining if two strings s1, s2
hold the same string value:
!strcmp(s1, s2)

Programming and Data Structure 26

String Comparison (strncmp)

Sometimes we only want to compare first n chars:
int strncmp(char *s1, char *s2, int n)

Works the same as strcmp except that it stops at the nth
character looks at less than n characters if either string is
shorter than n

strcmp(ʺsome diffʺ, ʺsome DIFFʺ) -- returns value > 0
strncmp(ʺsome diffʺ, ʺsome DIFFʺ,4) -- returns 0

Programming and Data Structure 27

String Comparison (ignoring case)

int strcasecmp(char *str1, char *str2)

• similar to strcmp except that upper and lower case
characters (e.g., ‘a’ and ‘A’) are considered to be equal

int strncasecmp(char *str1, char *str2, int n)

• version of strncmp that ignores case

Programming and Data Structure 28

Programming and Data Structure 29

strcat()

• Joins or concatenates two strings together.
 char *strcat (char *str1, char *str2);
– str2 is appended to the end of str1.
– The null character at the end of str1 is removed, and

str2 is joined at that point.

• Example:
 strcpy(name1, ʺAmit ʺ);
 strcpy(name2, ʺRoyʺ);
 strcat(name1, name2);

‘\0’imA t

‘\0’yoR

imA t ‘\0’yoR

Programming and Data Structure 30

Example:: count uppercase
/* Read a line of text and count the number of
uppercase letters */
#include <stdio.h>
#include <string.h>
main()
{
 char line[81];
 int i, n, count=0;
 scanf (ʺ%[^\n]ʺ, line);
 n = strlen (line);
 for (i=0; i<n; i++)
 if (isupper(line[i]) count++;
 printf (ʺ\n The number of uppercase letters in
the string %s is %dʺ, line, count);
}

Programming and Data Structure 31

Example:: compare two strings

#include <stdio.h>

int my_strcmp (char s1[],char s2[])

{
 int i=0;
 while(s1[i]!='\0' && s2[i]!='\0'){
 if (s1[i]!=s2[i]) return(s1[i]-s2[i]);
 else i++;
 }
 return(s1[i]-s2[i]);
}

Parameters passed as character array

Programming and Data Structure 32

main()
{
 char string1[100],string2[100];

 printf(ʺGive two strings \nʺ);
 scanf(ʺ%s %sʺ, string1, string2);

 printf (ʺComparison result: %d \nʺ,
 my_strcmp(string1,string2));

}

Give two strings
IITKGP IITMUMBAI
Comparison result: -2

Give two strings
KOLKATA KOLKATA
Comparison result: 0

Searching for a Character/String

char *strchr (char *str, int ch)
• returns a pointer to the first occurrence of ch in str

• returns NULL if ch does not occur in str
• can subtract original pointer from result pointer to

determine which character in array

char *strstr (char *str, char *searchstr)
• similar to strchr, but looks for the first occurrence of

the string searchstr in str

char *strrchr (char *str, int ch)
• similar to strchr except that the search starts from

the end of string str and works backward

Programming and Data Structure 33

Printing to a String

• The sprintf function allows us to print to a string
argument using printf formatting rules.

• First argument of sprintf is string to print to,
remaining arguments are as in printf.

Example:
char buffer[100];
sprintf (buffer, ʺ%s, %sʺ, LastName, FirstName);
if (strlen(buffer) > 15)
 printf(ʺLong name %s %s\nʺ, FirstName, LastName);

Programming and Data Structure 34

Reading from a String

• The sscanf function allows us to read from a string
argument using scanf rules

• First argument of sscanf is string to read from,
remaining arguments are as in scanf

Example:
char buffer[100] = ʺA10 50.0ʺ;
sscanf (buffer, ʺ%c%d%fʺ, &ch, &inum, &fnum);
 /* puts ‘A’ in ch, 10 in inum and 50.0 in fnum */

Programming and Data Structure 35

Example: Duplicate Removal

Write a C function that takes a string as an argument
and modifies the string so as to remove all
consecutive duplicate characters, e.g., mississippi ->
misisipi

void remove_duplicates (char word[]) {
 int k, j;
 char prev = '\0';
 for (k = j = 0; word[k]!='\0'; k++) {
 if (prev != word[k]) word[j++] = word[k];
 prev = word[k];
 }
 word[j] = '\0';
}

Programming and Data Structure 36

