
Arrays in C

Palash Dey

Department of Computer Science & Engg.

Indian Institute of Technology

Kharagpur

Slides credit: Prof. Indranil Sen Gupta

Programming and Data Structure 2

Basic Concept

• Many applications require multiple data items
that have common characteristics.
– In mathematics, we often express such groups of data

items in indexed form:

 x1, x2, x3, …, xn

• Why are arrays essential for some applications?
– Take an example.

– Finding the minimum of a set of numbers.

Programming and Data Structure 3

if ((a <= b) && (a <= c))
 min = a;
else
 if (b <= c)
 min = b;
 else
 min = c;

if ((a <= b) && (a <= c) && (a <= d))
 min = a;
else
 if ((b <= c) && (b <= d))
 min = b;
 else
 if (c <= d)
 min = c;
 else
 min = d;

3 numbers

4 numbers

Autumn Semester 2019 Programming and Data Structure 4

The Problem

• Suppose we have 10 numbers to handle.

• Or 20.

• Or 100.

• How to tackle this problem?

• Solution:
– Use arrays.

Programming and Data Structure 5

Using Arrays

• All the data items constituting the group share the
same name.

int x[10];

• Individual elements are accessed by specifying the
index.

x[0] x[1] x[2] x[9]

x is a 10-element one-
dimensional array

Programming and Data Structure 6

• The name of the array also denotes the starting
address of the array in memory.

– Example:

int x[10];

x[0], x[1], x[2], … indicates the contents of the
successive array locations.

x indicates the starting address in memory for the array.

Programming and Data Structure 7

An Example

 #include <stdio.h>

 main()

 {

int x[10];

x[0] = 15;

x[1] = x[0] + 5;

printf (”\n%d %d %d %u \n”, x[0], x[1], x[2], x);

}

Output:

15 20 1107384350 3221224640

Garbage Address

Declaring Arrays

• Like variables, the arrays that are used in a program
must be declared before they are used.

• General syntax:

 type array-name[size];
– type specifies the data type of element that will be contained in

the array (int, float, char, etc.).

– size is an integer constant which indicates the maximum
number of elements that can be stored inside the array.

• Example: int marks[5];
– marks is an array containing a maximum of 5 integers.

Programming and Data Structure 8

Programming and Data Structure 9

• Examples:

 int x[10];

 char line[80];

 float points[150];

 char name[35];

• If we are not sure of the exact size of the array, we can
define an array of a large size.

 int marks[50];

 though in a particular run we may only be using, say, 10
elements.

Programming and Data Structure 10

How an array is stored in memory?

• Starting from a given memory location, the successive array

elements are allocated space in consecutive memory

locations.

x: starting address of the array in memory

k: number of bytes allocated per array element

– Element a[i] :: allocated memory location at address x + i*k
– First array index assumed to start at zero.

Array a

x x+k x+2k

int a[10];

Programming and Data Structure 11

Accessing Array Elements

• A particular element of the array can be accessed by
specifying two things:
– Name of the array.

– Index (relative position) of the element in the array.

• In C, the index of an array starts from zero.

• Example:
– An array is defined as int x[10];
– The first element of the array x can be accessed as x[0], fourth

element as x[3], tenth element as x[9], etc.

Programming and Data Structure 12

Contd.

• The array index must evaluate to an integer between 0
and n-1 where n is the number of elements in the array.

• Any integer expression can be given as the index.

 a[x+2] = 25;

 b[3*x-y] = a[10-x] + 5;

Programming and Data Structure 13

A Warning

• In C, while accessing array elements, array bounds are not
checked.

• Example:

int marks[5];

:

:

marks[8] = 75;

– The above assignment would not necessarily cause an
error.

– Rather, it may result in unpredictable program results.

Programming and Data Structure 14

Initialization of Arrays

• General form:

 type array_name[size] = {list of values};

• Examples:

 int marks[5] = {72, 83, 65, 80, 76};

char name[4] = {’A’, ’m’, ’i’, ’t’};

• Some special cases:
– If the number of values in the list is less than the

number of elements, the remaining elements are
automatically set to zero.

float total[5] = {24.2, -12.5, 35.1};

total[0]=24.2, total[1]=-12.5, total[2]=35.1,

total[3]=0, total[4]=0

Programming and Data Structure 15

Contd.

– The size may be omitted. In such cases the compiler
automatically allocates enough space for all initialized
elements.

 int flag[] = {1, 1, 1, 0};

 char name[] = {’A’, ’m’, ’i’, ’t’};

Programming and Data Structure 16

Example 1: Find the minimum of a set of 10 numbers

#include <stdio.h>
main()
{
 int a[10], i, min;

 for (i=0; i<10; i++)
 scanf (%d, &a[i]);

 min = 99999; /* or, min=a[0] */
 for (i=0; i<10; i++)
 {
 if (a[i] < min)
 min = a[i];
 }
 printf (\n Minimum is %d, min);
}

Programming and Data Structure 17

Example 1: Find the minimum of a set of 10 numbers

#include <stdio.h>
main()
{
 int a[10], i, min;

 for (i=0; i<10; i++)
 scanf (%d, &a[i]);

 min = a[0];
 for (i=0; i<10; i++)
 {
 if (a[i] < min)
 min = a[i];
 }
 printf (\n Minimum is %d, min);
}

Programming and Data Structure 18

#include <stdio.h>
#define size 10

main()
{
 int a[size], i, min;

 for (i=0; i<size; i++)
 scanf (%d, &a[i]);

 min = a[0];
 for (i=0; i<size; i++)
 {
 if (a[i] < min)
 min = a[i];
 }
 printf (\n Minimum is %d, min);
}

Alternate
Version 1

Change only one
 line to change the

problem size

Programming and Data Structure 19

#include <stdio.h>

main()
{
 int a[100], i, min, n;

 scanf (%d, &n);
 /* Number of elements */

 for (i=0; i<n; i++)
 scanf (%d, &a[i]);

 min = a[0];
 for (i=0; i<n; i++)
 {
 if (a[i] < min)
 min = a[i];
 }
 printf (\n Minimum is %d, min);
}

Alternate
Version 2

Define an array of
large size and use
only the required

number of elements

Programming and Data Structure 20

Example 2:
Computing gpa

#include <stdio.h>
#define nsub 6

main()
{
 int grade_pt[nsub], cred[nsub], i,
 gp_sum=0, cred_sum=0;

 float gpa;

 for (i=0; i<nsub; i++)
 scanf (%d %d, &grade_pt[i],&cred[i]);

 for (i=0; i<nsub; i++)
 {
 gp_sum += grade_pt[i] * cred[i];
 cred_sum += cred[i];
 }
 gpa = (float) gp_sum / cred_sum;
 printf (\n GPA is: %f, gpa);
}

Handling two arrays
at the same time

Things you can’t do

• You cannot

– use “=” to assign one array variable to another:

 a = b; /* a and b are arrays */

– use “==” to directly compare array variables:

 if (a == b) ………

– directly scanf or printf arrays:

 printf (”……”, a);

Programming and Data Structure 21

int a[20], b[20];

Programming and Data Structure 22

How to copy the elements of one array to another?

• By copying individual elements:

int a[25], b[25];

……

for (j=0; j<25; j++)

 a[j] = b[j];

Programming and Data Structure 23

How to read the elements of an array?

• By reading them one element at a time.

int a[25];

……

for (j=0; j<25; j++)

 scanf (%d, &a[j]);

• The ampersand (&) is necessary.

• The elements can be entered all in one line or in different
lines.

Programming and Data Structure 24

How to print the elements of an array?

• By printing them one element at a time.

 for (j=0; j<25; j++)

 printf (\n %d, a[j]);

– The elements are printed one per line.

 printf (\n);

 for (j=0; j<25; j++)

 printf (%d, a[j]);

– The elements are printed all in one line (starting with
a new line).

Passing Arrays to a Function

How to pass arrays to a function?

• An array name can be used as an argument to a
function.
– Permits the entire array to be passed to the function.

– The way it is passed differs from that for ordinary
variables.

• Rules:
– The array name must appear by itself as argument,

without brackets or subscripts.

– The corresponding formal argument is written in the same
manner.
• Declared by writing the array name with a pair of empty brackets.

Programming and Data Structure 26

An Example with 1-D Array

Programming and Data Structure 27

main()
{
 int n;
 float list[100], avg;
 :
 avg = average(n,list);
 :
}

float average(int a, float x[])
{
 :
 sum = sum + x[i];
}

We can also write

 float x[100];

But the way the function
is written makes it
general; it works with
arrays of any size.

Programming and Data Structure 28

main()
{
 int n, i;
 float list[100], avg;
 scanf (“%d”, &n);
 for (i=0; i<n; ++)
 scanf (%d, &list[i]);
 avg = average (n, list);
 printf (\nAverage is: %d, avg);
}

float average(int a, float x[])
{
 float sum = 0; int index;
 for (index=0; index<a; index++)
 sum = sum + x[i];
 return sum;
}

The Actual Mechanism

• When an array is passed to a function, the values of the
array elements are not passed to the function.

– The array name is interpreted as the address of the
first array element.

– The formal argument therefore becomes a pointer to
the first array element.

– When an array element is accessed inside the
function, the address is calculated using the formula
stated before.

– Changes made inside the function are thus also
reflected in the calling program.

Programming and Data Structure 29

Programming and Data Structure 30

Contd.

• Passing parameters in this way is called

 call-by-reference.

• Normally parameters are passed in C using

 call-by-value.

• Basically what it means?
– If a function changes the values of array elements, then

these changes will be made to the original array that is
passed to the function.

Programming and Data Structure 31

Example: Parameter passed as a value

#include <stdio.h>

void swap (int a, int b)
{

int temp;

temp=a;
a=b;
b=temp;

}

main()

{

int x,y;

x=10; y=15;

printf(x=%d y=%d \n, x, y);

swap(x,y);

printf(x=%d y=%d \n, x, y);

}

Output:
 x=10 y=15
 x=10 y=15

Programming and Data Structure 32

Example: Minimum of a set of numbers

#include <stdio.h>
int minimum (int x[], int y);

main()
{
 int a[100], i, n;

 scanf (%d, &n);
 for (i=0; i<n; i++)
 scanf (%d, &a[i]);

 printf (\n Minimum is
%d,minimum(a,n));
}

int minimum (int x, int
size)
{
 int i, min = x[0];

 for (i=0;i<size;i++)
 if (min > x[i])
 min = x[i];
 return (min);
}

Parameter x passed by reference, size by value.

Programming and Data Structure 33

Example: Square each element of array

#include <stdio.h>
void square (int a[], int b);

main()
{
 int a[100], i, n;

 scanf (%d, &n);
 for (i=0; i<n; i++)
 scanf (”%d”, &a[i]);

 square (a, n);

 printf (\nNew array is:);
 for (i=0; i<n; i++)
 printf (%d, a[i]);

}

void square (int x, int
size)
{
 int i;

 for (i=0;i<size;i++)
 x[i] = x[i] * x[i];

 return;
}

Introduction to Pointers

• What is the concept?
– Pointer is a variable which stores the address of memory

location of another variable.

– When declared, we must specify the data type of the
variable being pointed to.

– Examples:

 int *p;

 float *x, *y;

 char *flag;

Programming and Data Structure 34

• A pointer variable can be assigned the address of
another variable.
 int a, *p;

 a=10;

 p = &a; /* Address of ‘a’ assigned to ‘p’ */

 printf (”%d %d”, a, *p);

 /* Will print “10 10” */

• Point to note:
– Array name indicates pointer to first array element.

int num[10], *xyz;

xyz = num; /* Points to x[0] */

Programming and Data Structure 35

– When an integer expression E is added to or subtracted
from a pointer, actually scale factor times E is added or
subtracted.
• Scale factor indicates size of the data item being pointed to in

number of bytes.

• Scale factor for char is 1, int is 4, float is 4, double is 8, etc.

int a, *p;

p = &a; /* p is assigned address of ‘a’
 (say, 2500) */

p++; /* p will become 2504 */

p = p – 10; /* p will become 2464 */

Programming and Data Structure 36

Programming and Data Structure 37

• Consider the declaration:

 int x[5] = {1, 2, 3, 4, 5};

 int *p;

– Suppose that the base address of x is 2500, and each
integer requires 4 bytes.

 Element Value Address

 x[0] 1 2500

 x[1] 2 2504

 x[2] 3 2508

 x[3] 4 2512

 x[4] 5 2516

Programming and Data Structure 38

Contd.

 Both x and &x[0] have the value 2500.

 p = x; and p = &x[0]; are equivalent.

• Relationship between p and x:
p = &x[0] = 2500

p+1 = &x[1] = 2504

p+2 = &x[2] = 2508

p+3 = &x[3] = 2512

p+4 = &x[4] = 2516

*(p+i) gives the

 value of x[i]

• An example:

 int x[] = {1,2,3,4,5,6,7,8,9,10};

 int *p;

 p = x + 3; /* Point to 4th element of x */

 printf (%d, *p); /* Will print 4 */

 printf (%d, *(p+5));

 /* Will print 9 */

 printf (%d %d, p[3], p[-1]);

 /* Will print 7 and 3 */

Programming and Data Structure 39

Programming and Data Structure 40

Example: function to find average

#include <stdio.h>

main()
{
 int x[100], k, n;

 scanf (”%d”, &n);

 for (k=0; k<n; k++)
 scanf (”%d”, &x[k]);

 printf (”\nAverage is %f”,
 avg (x, n));
}

float avg (int array[], int
size)

{
 int *p, i , sum = 0;

 p = array;

 for (i=0; i<size; i++)
 sum = sum + *(p+i);

 return ((float) sum / size);
}

Programming and Data Structure 41

Example: SWAP revisited

#include <stdio.h>

void swap (int *a, int *b)
{

int temp;

temp = *a;
*a = *b;
*b = temp;

}

main()

{

int x, y;

x=10; y=15;

printf (x=%d y=%d \n, x,y);

swap (&x, &y);

printf (x=%d y=%d \n, x,y);

}

Output:
 x=10 y=15
 x=15 y=10

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

