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Basic Concept

• Many applications require multiple data items 
that have common characteristics.
– In mathematics, we often express such groups of data 

items in indexed form:

     x1, x2, x3, …, xn

• Why are arrays essential for some applications?
– Take an example.

– Finding the minimum of a set of numbers.
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if ((a <= b) && (a <= c))
    min = a;
else
    if   (b <= c)
          min = b;
    else
          min = c;

if ((a <= b) && (a <= c) && (a <= d))
    min = a;
else
    if ((b <= c) && (b <= d))
          min = b;
    else
         if (c <= d)
              min = c;
        else
             min = d;

3 numbers

4 numbers
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The Problem

• Suppose we have 10 numbers to handle.

• Or 20.

• Or 100.

• How to tackle this problem?

• Solution:
– Use arrays.
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Using Arrays

• All the data items constituting the group share the 
same name.

int  x[10];

• Individual elements are accessed by specifying the 
index.

x[0] x[1] x[2] x[9]

x is a 10-element  one-
dimensional array
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• The name of the array also denotes the starting 
address of the array in memory.

– Example:

int x[10];

x[0], x[1], x[2], … indicates the contents of the 
successive array locations.

x indicates the starting address in memory for the array.
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An Example

 #include <stdio.h>

 main()

 {

int x[10];

x[0] = 15;

x[1] = x[0] + 5;

printf (”\n%d %d %d %u \n”, x[0], x[1], x[2], x);

}

Output:

15 20 1107384350 3221224640

Garbage Address



Declaring Arrays

• Like variables, the arrays that are used in a program 
must be declared before they are used.

• General syntax:

         type array-name[size];
– type specifies the data type of element that will be contained in 

the array (int, float, char, etc.).

– size is an integer constant which indicates the maximum 
number of elements that can be stored inside the array.

• Example:     int marks[5];
– marks is an array containing a maximum of 5 integers.
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• Examples:

     int   x[10];

  char  line[80];

  float points[150];

  char  name[35];

• If we are not sure of the exact size of the array, we can 
define an array of a large size.

    int  marks[50];

    though in a particular run we may only be using, say, 10 
elements.
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How an array is stored in memory?

• Starting from a given memory location, the successive array 

elements are allocated space in consecutive memory 

locations.

x: starting address of the array in memory

k: number of bytes allocated per array element

– Element a[i] :: allocated memory location at  address  x + i*k
– First array index assumed to start at zero.

Array a

x x+k x+2k

int a[10];
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Accessing Array Elements

• A particular element of the array can be accessed by 
specifying two things:
– Name of the array.

– Index (relative position) of the element in the array.

• In C, the index of an array starts from zero.

• Example:
– An array is defined as      int x[10];
– The first element of the array x can be accessed as x[0], fourth 

element as x[3], tenth element as x[9], etc.
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Contd.

• The array index must evaluate to an integer between 0 
and n-1 where n is the number of elements in the array.

• Any integer expression can be given as the index.

     a[x+2] = 25;

  b[3*x-y] = a[10-x] + 5;
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A Warning

• In C, while accessing array elements, array bounds are not 
checked.

• Example:

int   marks[5];

:

:

marks[8] = 75;

– The above assignment would not necessarily cause an 
error.

– Rather, it may result in unpredictable program results.
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Initialization of Arrays

• General form:

   type array_name[size] = {list of values};

• Examples:

    int  marks[5] = {72, 83, 65, 80, 76};

char name[4] = {’A’, ’m’, ’i’, ’t’};

• Some special cases:
– If the number of values in the list is less than the 

number of elements, the remaining elements are 
automatically set to zero.

float total[5] = {24.2, -12.5, 35.1};

total[0]=24.2, total[1]=-12.5, total[2]=35.1, 

total[3]=0,    total[4]=0
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Contd.

– The size may be omitted. In such cases the compiler 
automatically allocates enough space for all initialized 
elements.

         int  flag[] = {1, 1, 1, 0};

    char name[] = {’A’, ’m’, ’i’, ’t’};
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Example 1:  Find the minimum of a set of 10 numbers

#include  <stdio.h>
main()
{
    int  a[10], i, min;

    for  (i=0; i<10; i++)
        scanf (%d, &a[i]);

    min = 99999;    /* or, min=a[0] */
    for  (i=0; i<10; i++)
    {
        if  (a[i] < min)
            min = a[i];
    }
    printf (\n Minimum is %d, min);
}
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Example 1:  Find the minimum of a set of 10 numbers

#include  <stdio.h>
main()
{
    int  a[10], i, min;

    for  (i=0; i<10; i++)
        scanf (%d, &a[i]);

    min = a[0];    
    for  (i=0; i<10; i++)
    {
        if  (a[i] < min)
            min = a[i];
    }
    printf (\n Minimum is %d, min);
}
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#include  <stdio.h>
#define   size   10

main()
{
    int  a[size], i, min;

    for  (i=0; i<size; i++)
        scanf (%d, &a[i]);

    min = a[0];
    for  (i=0; i<size; i++)
    {
        if  (a[i] < min)
            min = a[i];
    }
    printf (\n Minimum is %d, min);
}

Alternate
Version 1

Change only one
 line to change the

problem size
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#include  <stdio.h>

main()
{
    int  a[100], i, min, n;

    scanf (%d, &n);  
             /* Number of elements */
    

    for  (i=0; i<n; i++)
        scanf (%d, &a[i]);

    min = a[0];
    for  (i=0; i<n; i++)
    {
        if  (a[i] < min)
            min = a[i];
    }
    printf (\n Minimum is %d, min);
}

Alternate
Version 2

Define an array of
large size and use
only the required

number of elements
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Example 2:
Computing gpa 

#include  <stdio.h>
#define  nsub  6

main()
{
    int  grade_pt[nsub], cred[nsub], i, 
         gp_sum=0, cred_sum=0;

    float gpa;

    for  (i=0; i<nsub; i++)
      scanf (%d %d, &grade_pt[i],&cred[i]);

    for  (i=0; i<nsub; i++)
    {
        gp_sum += grade_pt[i] * cred[i];
        cred_sum += cred[i];
    }
    gpa = (float) gp_sum / cred_sum;
    printf (\n GPA is: %f, gpa);
}

Handling two arrays
at the same time



Things you can’t do

• You cannot

– use “=” to assign one array variable to another:

    a = b;  /* a and b are arrays */

– use “==” to directly compare array variables:

   if (a == b)  ………

– directly scanf or printf arrays:

   printf (”……”, a);
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int a[20], b[20];
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How to copy the elements of one array to another?

• By copying individual elements:

    

int a[25], b[25];

……         

for (j=0; j<25; j++)

       a[j] = b[j];
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How to read the elements of an array?

• By reading them one element at a time.

   

int a[25];

…… 

for (j=0; j<25; j++)

      scanf (%d, &a[j]);

• The ampersand (&) is necessary.

• The elements can be entered all in one line or in different 
lines.
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How to print the elements of an array?

• By printing them one element at a time.

           for (j=0; j<25; j++)

        printf (\n %d, a[j]);

– The elements are printed one per line.

           printf (\n);

     for (j=0; j<25; j++)

        printf ( %d, a[j]);

– The elements are printed all in one line (starting with 
a new line).
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How to pass arrays to a function?

• An array name can be used as an argument to a 
function.
– Permits the entire array to be passed to the function.

– The way it is passed differs from that for ordinary 
variables.

• Rules:
– The array name must appear by itself as argument, 

without brackets or subscripts.

– The corresponding formal argument is written in the same 
manner.
• Declared by writing the array name with a pair of empty brackets.
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An Example with 1-D Array

Programming and Data Structure 27

main()
{
   int  n;
   float   list[100], avg;
   :
   avg  =  average(n,list);
    :
}

float average(int a, float x[])
{
   :
   sum = sum + x[i];
}

We can also write 

    float  x[100];

But the way the function 
is written makes it 
general; it works with 
arrays of any size.
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main()
{
   int  n, i;
   float   list[100], avg;
   scanf (“%d”, &n);
   for (i=0; i<n; ++)
     scanf (%d, &list[i]);
   avg  =  average (n, list);
   printf (\nAverage is: %d, avg);
}

float average(int a, float x[])
{
   float sum = 0;  int index;
   for (index=0; index<a; index++)
     sum = sum + x[i];
   return sum;
}



The Actual Mechanism

• When an array is passed to a function, the values of the 
array elements are not passed to the function.

– The array name is interpreted as the address of the 
first array element.

– The formal argument therefore becomes a pointer to 
the first array element.

– When an array element is accessed inside the 
function, the address is calculated using the formula 
stated before.

– Changes made inside the function are thus also 
reflected in the calling program.
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Contd.

• Passing parameters in this way is called 

        call-by-reference.

• Normally parameters are passed in C using

        call-by-value.

• Basically what it means?
– If a function changes the values of array elements, then 

these changes will be made to the original array that is 
passed to the function.
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Example: Parameter passed as a value

#include <stdio.h>

void swap (int a, int b)
{

int temp;

temp=a;
a=b;
b=temp;

}

main()

{

int x,y;

x=10;  y=15;

printf(x=%d y=%d \n, x, y);

swap(x,y);

printf(x=%d y=%d \n, x, y);

}

Output:
   x=10 y=15 
   x=10 y=15 
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Example: Minimum of a set of numbers

#include <stdio.h>
int minimum (int x[], int y);

main()
{
  int a[100], i, n;

  scanf (%d, &n);  
  for (i=0; i<n; i++)
    scanf (%d, &a[i]);

  printf (\n Minimum is 
%d,minimum(a,n));
}

int minimum (int x, int 
size)
{
  int i, min = x[0];

  for (i=0;i<size;i++)
     if (min > x[i])
        min = x[i];
  return (min);
}

Parameter x passed by reference, size by value.
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Example: Square each element of array

#include <stdio.h>
void square (int a[], int b);

main()
{
  int a[100], i, n;

  scanf (%d, &n);  
  for (i=0; i<n; i++)
    scanf (”%d”, &a[i]);

  square (a, n);

  printf (\nNew array is:);
  for (i=0; i<n; i++)
    printf ( %d, a[i]);          
                           
}

void square (int x, int 
size)
{
  int i;

  for (i=0;i<size;i++)
     x[i] = x[i] * x[i];
        
  return;
}



Introduction to Pointers

• What is the concept?
– Pointer is a variable which stores the address of memory 

location of another variable.

– When declared, we must specify the data type of the 
variable being pointed to.

– Examples:

  int    *p;

  float  *x, *y;

  char   *flag;
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• A pointer variable can be assigned the address of 
another variable.
  int  a, *p;

  a=10;

  p = &a;  /* Address of ‘a’ assigned to ‘p’ */

  printf (”%d %d”, a, *p);

           /* Will print “10 10” */

• Point to note:
– Array name indicates pointer to first array element.

int  num[10], *xyz;

xyz = num;  /* Points to x[0] */
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– When an integer expression E is added to or subtracted 
from a pointer, actually scale factor times E is added or 
subtracted.
• Scale factor indicates size of the data item being pointed to in 

number of bytes.

• Scale factor for char is 1, int is 4, float is 4, double is 8, etc.

int a, *p;

p = &a;      /* p is assigned address of ‘a’ 
                                  (say, 2500) */

p++;         /* p will become 2504 */

p = p – 10;  /* p will become 2464 */
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• Consider the declaration:

         int x[5] = {1, 2, 3, 4, 5};

    int *p;

– Suppose that the base address of x is 2500, and each 
integer requires 4 bytes.

         Element    Value    Address

             x[0]             1           2500

             x[1]             2           2504

             x[2]             3           2508

             x[3]             4           2512

             x[4]             5           2516
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Contd.

    Both x and &x[0] have the value 2500.

    p = x;    and    p = &x[0];  are equivalent.

• Relationship between p and x:
p      =   &x[0]   =   2500

p+1  =   &x[1]   =   2504

p+2  =   &x[2]   =   2508

p+3  =   &x[3]   =   2512

p+4  =   &x[4]   =   2516

*(p+i) gives the

     value of x[i]



• An example:

  int  x[ ] = {1,2,3,4,5,6,7,8,9,10};

 int  *p;

 p = x + 3;         /* Point to 4th element of x */

 printf (%d, *p);  /* Will print 4 */

 printf (%d, *(p+5));  

                     /* Will print 9 */

 printf (%d %d, p[3], p[-1]);

                     /* Will print 7 and 3 */
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Example: function to find average

#include <stdio.h>

main()
{
  int x[100], k, n;

  scanf (”%d”, &n);

  for (k=0; k<n; k++)
     scanf (”%d”, &x[k]);

  printf  (”\nAverage is %f”,
                avg (x, n));
} 
                               
   

float avg (int array[], int 
size)

{
  int  *p, i , sum = 0;

  p = array;

  for (i=0; i<size; i++)
      sum = sum + *(p+i);
   
  return ((float) sum / size);
}
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Example: SWAP revisited

#include <stdio.h>

void swap (int *a, int *b)
{

int temp;

temp = *a;
*a = *b;
*b = temp;

}

main()

{

int x, y;

x=10;  y=15;

printf (x=%d y=%d \n, x,y);

swap (&x, &y);

printf (x=%d y=%d \n, x,y);

}

Output:
   x=10 y=15 
   x=15 y=10 
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