
1

Functions

Palash Dey

Department of Computer Science & Engg.

Indian Institute of Technology

Kharagpur

Slides credit: Prof. Indranil Sen Gupta

Programming and Data Structure 2

Introduction
• Function

‒ A self-contained program segment that carries out
some specific, well-defined task.

• Some properties:
‒ Every C program consists of one or more functions.

• One of these functions must be called “main”.
• Execution of the program always begins by carrying out
the instructions in “main”.

‒ A function will carry out its intended action
whenever it is called or invoked.

Programming and Data Structure 3

‒ In general, a function will process information that
is passed to it from the calling portion of the
program, and return a single value.
• Information is passed to the function via special
identifiers called arguments or parameters.

• The value is returned by the “return” statement.

‒ Some function may not return anything.
• Return data type specified as “void”.

Programming and Data Structure 4

#include <stdio.h>

int factorial (int m)
{
 int i, temp=1;
 for (i=1; i<=m; i++)
 temp = temp * i;
 return (temp);
}

int main()
{
 int n;
 for (n=1; n<=10; n++)
 printf (ʺ%d! = %d \nʺ,
 n, factorial (n));
}

Output:
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

Programming and Data Structure 5

#include <stdio.h>

int factorial (int m)
{
 int i, temp=1;
 for (i=1; i<=m; i++)
 temp = temp * i;
 return (temp);
}

int main()
{
 int n;
 for (n=11; n<=20; n++)
 printf (ʺ%d! = %d \nʺ,
 n, factorial (n));
}

Output:
11! = 39916800
12! = 479001600
13! = 1932053504
14! = 1278945280
15! = 2004310016
16! = 2004189184
17! = -288522240
18! = -898433024
19! = 109641728
20! = -2102132736

Programming and Data Structure 6

#include <stdio.h>

long int factorial (int m)

{
 int i; long int temp=1;

 for (i=1; i<=m; i++)
 temp = temp * i;
 return (temp);

}

int main()
{
 int n;
 for (n=11; n<=20; n++)
 printf (ʺ%d! = %ld \nʺ,
 n, factorial (n));
}

Output:
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000

Programming and Data Structure 7

Why Functions?

• Functions
‒ Allows one to develop a program in a modular fashion.

• Divide-and-conquer approach.

‒ All variables declared inside functions are local variables.
• Known only in function defined.
• There are exceptions (to be discussed later).

‒ Parameters
• Communicate information between functions.
• They also become local variables.

Programming and Data Structure 8

• Benefits
‒ Divide and conquer

• Manageable program development.
• Construct a program from small pieces or components.

‒ Software reusability
• Use existing functions as building blocks for new
programs.

• Abstraction: hide internal details (library functions).

Programming and Data Structure 9

Defining a Function

• A function definition has two parts:
‒ The first line.
‒ The body of the function.

return-value-type function-name (parameter-
list)  
{  
 declarations and statements 
}

Programming and Data Structure 10

• The first line contains the return-value-type, the function name,
and optionally a set of comma-separated arguments enclosed in
parentheses.

‒ Each argument has an associated type declaration.
‒ The arguments are called formal arguments or formal

parameters.

• Example:
 int gcd (int A, int B)

• The argument data types can also be declared on the next line:
 int gcd (A, B)

 int A, B;

Programming and Data Structure 11

• The body of the function is actually a compound
statement that defines the action to be taken by the
function.

int gcd (int A, int B)
{
 int temp;
 while ((B % A) != 0) {
 temp = B % A;
 B = A;
 A = temp;
 }
 return (A);
}

BODY

Programming and Data Structure 12

• When a function is called from some other function,
the corresponding arguments in the function call are
called actual arguments or actual parameters.

‒ The formal and actual arguments must match in
their data types.

• Point to note:
‒ The identifiers used as formal arguments are
“local”.
• Not recognized outside the function.
• Names of formal and actual arguments may differ.

Programming and Data Structure 13

#include <stdio.h>
/* Compute the GCD of four numbers */

main()
{
 int n1, n2, n3, n4, result;
 scanf (ʺ%d %d %d %dʺ, &n1, &n2, &n3, &n4);
 result = gcd (gcd (n1, n2), gcd (n3, n4));
 printf (ʺThe GCD of %d, %d, %d and %d is %d \nʺ,
 n1, n2, n3, n4, result);
}

Programming and Data Structure 14

Function Not Returning Any Value

• Example: A function which prints if a
number if divisible by 7 or not.

void div7 (int n)
{
 if ((n % 7) == 0)
 printf (ʺ%d is divisible by 7ʺ, n);
 else
 printf (ʺ%d is not divisible by 7ʺ, n);

 return;
} OPTIONAL

Programming and Data Structure 15

• Returning control
‒ If nothing returned

• return;
• or, until reaches right brace

‒ If something returned
• return expression;

Programming and Data Structure 16

Some Points
• A function cannot be defined within another function.

‒ All function definitions must be disjoint.

• Nested function calls are allowed.
‒ A calls B, B calls C, C calls D, etc.
‒ The function called last will be the first to return.

• A function can also call itself, either directly or in a
cycle.
‒ A calls A
‒ A calls B, B calls C, C calls back A.
‒ Called recursive call or recursion.

17

Example:: main calls ncr, ncr calls fact
#include <stdio.h>

int ncr (int n, int r);
int fact (int n);

main()
{
 int i, m, n, sum=0;
 scanf (ʺ%d %dʺ, &m, &n);

 for (i=1; i<=m; i+=2)
 sum = sum + ncr(n,i);

 printf (ʺResult: %d \nʺ,
 sum);
}

int ncr (int n, int r)
{
 return (fact(n) /
 fact(r) / fact(n-r));
}

int fact (int n)
{
 int i, temp=1;
 for (i=1; i<=n; i++)
 temp *= i;
 return (temp);
}

Programming and Data Structure

Programming and Data Structure 18

#include <stdio.h>
int A;
void main()
 { A = 1;

myProc();
printf ("A = %d\n", A);
}

void myProc()
{ int A = 2;
while (A == 2)

 {
 int A = 3;
 printf ("A = %d\n", A);
 break;
}
printf ("A = %d\n", A);
}

Variable Scope

Output:
A = 3
A = 2
A = 1

Programming and Data Structure 19

 Math Library Functions

• Math library functions
‒ perform common mathematical calculations
 #include <math.h>

• Format for calling functions
 FunctionName (argument);

• If multiple arguments, use comma-separated list
 printf (ʺ%fʺ, sqrt(900.0));

• Calls function sqrt, which returns the square root of its
argument.

• All math functions return data type double.
‒ Arguments may be constants, variables, or expressions.

20

Math Library Functions
double acos(double x) ‒ Compute arc cosine of x.
double asin(double x) ‒ Compute arc sine of x.
double atan(double x) ‒ Compute arc tangent of x.
double atan2(double y, double x) ‒ Compute arc tangent of y/x.
double ceil(double x) ‒ Get smallest integer that exceeds x.
double floor(double x) ‒ Get largest integral value less than x.
double cos(double x) ‒ Compute cosine of angle in radians.
double cosh(double x) ‒ Compute the hyperbolic cosine of x.
double sin(double x) ‒ Compute sine of angle in radians.
double sinh(double x) ‒ Compute the hyperbolic sine of x.
double tan(double x) ‒ Compute tangent of angle in radians.
double tanh(double x) ‒ Compute the hyperbolic tangent of x.
double exp(double x) ‒ Compute exponential of x.
double fabs (double x) ‒ Compute absolute value of x.
double log(double x) ‒ Compute log to the base e of x.
double log10 (double x) ‒ Compute log to the base 10 of x.
double pow (double x, double y) ‒ Compute x raised to the power y.
double sqrt(double x) ‒ Compute the square root of x.

Programming and Data Structure

21

An example
#include <stdio.h>

#include <math.h>

int main()

{

 double value, result;

 float a, b;

 value = 2345.6; a = 23.5;

 result = sqrt(value);

 b = pow(23.5,4);

 printf (ʺ\nresult = %f, b = %fʺ, result, b);

}

Programming and Data Structure

Must be compiled as:

gcc examp.c -lm

Link math
library

Programming and Data Structure 22

Function Prototypes

• Usually, a function is defined before it is called.
– main() is the last function in the program.
‒ Easy for the compiler to identify function definitions in a

single scan through the file.

• However, many programmers prefer a top-down
approach, where the functions follow main().

‒ Must be some way to tell the compiler.
‒ Function prototypes are used for this purpose.

• Only needed if function definition comes after use.

Programming and Data Structure 23

‒ Function prototypes are usually written at the
beginning of a program, ahead of any functions
(including main()).

‒ Examples:
int gcd (int A, int B);
void div7 (int number);

• Note the semicolon at the end of the line.
• The argument names can be different; but it is a good
practice to use the same names as in the function
definition.

24

Example:: function prototypes
#include <stdio.h>

int ncr (int n, int r);
int fact (int n);

main()
{
 int i, m, n, sum=0;
 scanf (ʺ%d %dʺ, &m, &n);

 for (i=1; i<=m; i+=2)
 sum = sum + ncr(n,i);

 printf (ʺResult: %d \nʺ,
 sum);
}

int ncr (int n, int r)
{
 return (fact(n) /
 fact(r) / fact(n-r));
}

int fact (int n)
{
 int i, temp=1;
 for (i=1; i<=n; i++)
 temp *= i;
 return (temp);
}

Programming and Data Structure

Programming and Data Structure 25

 Header Files
• Header files

‒ Contain function prototypes for library functions.
– <stdlib.h> , <math.h> , etc.
‒ Load with: #include <filename>

‒ Example:
 #include <math.h>

• Custom header files
‒ Create file(s) with function definitions.
‒ Save as filename.h (say).

‒ Load in other files with #include ʺfilename.hʺ
‒ Reuse functions.

Programming and Data Structure 26

Calling Functions: Call by Value and Call by
Reference

• Used when invoking functions.

• Call by value

‒ Copy of argument passed to function.
‒ Changes in function do not affect original.
‒ Use when function does not need to modify argument.

• Avoids accidental changes.
• Call by reference.

‒ Passes the reference to the original argument.
‒ Execution of the function may affect the original.
‒ Not directly supported in C ‒ can be effected using pointers.

C supports only “call by value”

Programming and Data Structure 27

Example: Random Number Generation
• rand function

‒ Prototype defined in <stdlib.h>
‒ Returns "random" number between 0 and RAND_MAX
 i = rand();
‒ Pseudorandom

• Preset sequence of "random" numbers
• Same sequence for every function call

• Scaling
‒ To get a random number between 1 and n
 1 + (rand() % n)
‒ To simulate the roll of a dice:

 1 + (rand() % 6)

Programming and Data Structure 28

 Random Number Generation: Contd.

• srand function
‒ Prototype defined in <stdlib.h>
‒ Takes an integer seed, and randomizes the random number

generator.
 srand (seed);

Programming and Data Structure 29

#include <stdio.h>
#include <stdlib.h>
int main()
{
 int i;
 unsigned seed;
 printf (ʺEnter seed: ʺ);
 scanf (ʺ%uʺ, &seed);
 srand (seed);
 for (i = 1; i <= 10; i++)
 {
 printf (ʺ%10d ʺ, 1 + (rand() % 6));
 if (i % 5 == 0)
 printf (ʺ\nʺ);
 }
 return 0;
}

A programming example.
Randomizing die rolling
program.

30

Program Output

Programming and Data Structure 31

#define: Macro definition

• Preprocessor directive in the following form:
 #define string1 string2

‒ Replaces string1 by string2 wherever it occurs
before compilation.

‒ For example,
 #define PI 3.1415926
 #define discr b*b-4*a*c

Programming and Data Structure 32

#define: Macro definition
#include <stdio.h>

#define PI 3.1415926

main()

{

 float r=4.0, area;

 area = PI*r*r;

}

#include <stdio.h>

main()

{

 float r=4.0, area;

 area = 3.1415926*r*r;

}

Programming and Data Structure 33

#define with arguments

• #define statement may be used with
arguments.
‒ Example: #define sqr(x) x*x
‒ How macro substitution will be carried out?

r = sqr(a) + sqr(30); ➔ r = a*a + 30*30;
r = sqr(a+b); ➔ r = a+b*a+b;

‒ The macro definition should have been written as:
#define sqr(x) (x)*(x)

 r = (a+b)*(a+b);

WRONG?

34

Recursion: Function calling itself

Programming and Data Structure

Programming and Data Structure 35

Recursion

• A process by which a function calls itself repeatedly.
‒ Either directly.

• X calls X.
‒ Or cyclically in a chain.

• X calls Y, and Y calls X.

• Used for repetitive computations in which each action
is stated in terms of a previous result.
 fact(n) = n * fact (n-1)

Programming and Data Structure 36

Contd.

• For a problem to be written in recursive form,
two conditions are to be satisfied:
‒ It should be possible to express the problem in
recursive form.

‒ The problem statement must include a stopping
condition.

fact(n) = 1, if n = 0
 = n * fact(n-1), if n > 0

Programming and Data Structure 37

• Examples:
‒ Factorial:

fact(0) = 1
fact(n) = n * fact(n-1), if n > 0

‒ GCD:
gcd (0, n) = n
gcd (m, 0) = m
gcd (m, n) = m, if m = n
gcd (m, n) = gcd (m%n, n), if m > n
gcd (m, n) = gcd (m, n%m), if m < n

‒ Fibonacci series (0, 1, 1, 2, 3, 5, 8, 13, ….)
fib (0) = 0
fib (1) = 1
fib (n) = fib (n-1) + fib (n-2), if n > 1

38

Example 1 :: Factorial

Programming and Data Structure

long int fact (n)
int n;
{
 if (n == 0)
 return (1);
 else
 return (n * fact(n-1));
}

Programming and Data Structure 39

Example 2 :: GCD

int gcd (m, n)
int m, n;
{
 if (m == 0) return n;
 if (n == 0) return m;
 if (m == n) return (m);
 if (m > n)
 return gcd (m%n, n);
 else
 return gcd (m, n%m);
}

Programming and Data Structure 40

• Mechanism of execution
‒ When a recursive program is executed, the
recursive function calls are not executed
immediately.
• They are kept aside (on a stack) until the stopping
condition is encountered.

• The function calls are then executed in reverse order.

Programming and Data Structure 41

Example :: Calculating fact(4)

‒ First, the function calls will be processed:
fact(4) = 4 * fact(3)
fact(3) = 3 * fact(2)
fact(2) = 2 * fact(1)
fact(1) = 1 * fact(0)

‒ The actual values return in the reverse order:
fact(0) = 1
fact(1) = 1 * 1 = 1
fact(2) = 2 * 1 = 2
fact(3) = 3 * 2 = 6
fact(4) = 4 * 6 = 24

Programming and Data Structure 42

Example 3 :: Fibonacci number

• Fibonacci number f(n) can be defined as:
 f(0) = 0
 f(1) = 1
 f(n) = f(n-1) + f(n-2), if n > 1
‒ The successive Fibonacci numbers are:

0, 1, 1, 2, 3, 5, 8, 13, 21, …..

• Function definition:
int f (int n)
{
 if (n < 2) return (n);
 else return (f(n-1) + f(n-2));
}

Programming and Data Structure 43

Tracing Execution

• How many times the function is
called when evaluating f(4) ?

• Inefficiency:
‒ Same thing is computed several

times.

f(4)

f(3) f(2)

f(1)f(2) f(0)f(1)

f(1) f(0)

called 9 times

44

Performance Tip

• Avoid Fibonacci-style recursive programs
which result in an exponential “explosion” of
calls.

• Avoid using recursion in performance
situations.

• Recursive calls take time and consume
additional memory.

Programming and Data Structure

45

Fibonacci number: iterative version

Programming and Data Structure

#include <stdio.h>
int f (int x);

int main()
{
 printf (“\n %d %d %d %d”, f(2), f(3), f(4), f(5));
}

int f (int n)
{
 int a = 0, b = 1, temp, i;
 for (i=2; i<=n; i++)
 {
 temp = a + b;
 a = b;
 b = temp;
 }
 return (b);
}

Output:
1 2 3 5

Programming and Data Structure 46

Example 4 :: Towers of Hanoi Problem

5
4
3
2
1

LEFT CENTER RIGHT

Programming and Data Structure 47

• The problem statement:
‒ Initially all the disks are stacked on the LEFT pole.
‒ Required to transfer all the disks to the RIGHT
pole.
• Only one disk can be moved at a time.
• A larger disk cannot be placed on a smaller disk.

‒ CENTER pole is used for temporary storage of
disks.

Programming and Data Structure 48

• Recursive statement of the general problem of
n disks.
‒ Step 1:

• Move the top (n-1) disks from LEFT to CENTER.
‒ Step 2:

• Move the largest disk from LEFT to RIGHT.
‒ Step 3:

• Move the (n-1) disks from CENTER to RIGHT.

Programming and Data Structure 49

#include <stdio.h>

void transfer (int n, char from, char to, char temp);

main()
{
 int n; /* Number of disks */
 scanf (ʺ%dʺ, &n);
 transfer (n, ’L’, ’R’, ’C’);
}

void transfer (int n, char from, char to, char temp)
{
 if (n > 0) {
 transfer (n-1, from, temp, to);
 printf (ʺMove disk %d from %c to %c \nʺ, n, from, to);
 transfer (n-1, temp, to, from);
 }
 return;
}

Programming and Data Structure 50

3
Move disk 1 from L to R
Move disk 2 from L to C
Move disk 1 from R to C
Move disk 3 from L to R
Move disk 1 from C to L
Move disk 2 from C to R
Move disk 1 from L to R

4
Move disk 1 from L to C
Move disk 2 from L to R
Move disk 1 from C to R
Move disk 3 from L to C
Move disk 1 from R to L
Move disk 2 from R to C
Move disk 1 from L to C
Move disk 4 from L to R
Move disk 1 from C to R
Move disk 2 from C to L
Move disk 1 from R to L
Move disk 3 from C to R
Move disk 1 from L to C
Move disk 2 from L to R
Move disk 1 from C to R

Programming and Data Structure 51

Move disk 5 from L to R
Move disk 1 from C to L
Move disk 2 from C to R
Move disk 1 from L to R
Move disk 3 from C to L
Move disk 1 from R to C
Move disk 2 from R to L
Move disk 1 from C to L
Move disk 4 from C to R
Move disk 1 from L to R
Move disk 2 from L to C
Move disk 1 from R to C
Move disk 3 from L to R
Move disk 1 from C to L
Move disk 2 from C to R
Move disk 1 from L to R

5
Move disk 1 from L to R
Move disk 2 from L to C
Move disk 1 from R to C
Move disk 3 from L to R
Move disk 1 from C to L
Move disk 2 from C to R
Move disk 1 from L to R
Move disk 4 from L to C
Move disk 1 from R to C
Move disk 2 from R to L
Move disk 1 from C to L
Move disk 3 from R to C
Move disk 1 from L to R
Move disk 2 from L to C
Move disk 1 from R to C

Programming and Data Structure 52

Recursion vs. Iteration
• Repetition

‒ Iteration: explicit loop
‒ Recursion: repeated function calls

• Termination
‒ Iteration: loop condition fails
‒ Recursion: base case recognized

• Both can have infinite loops
• Balance

‒ Choice between performance (iteration) and good
software engineering (recursion).

Programming and Data Structure 53

How are function calls implemented?
• The following applies in general, with minor

variations that are implementation dependent.
‒ The system maintains a stack in memory.

• Stack is a last-in first-out structure.
• Two operations on stack, push and pop.

‒ Whenever there is a function call, the activation

record gets pushed into the stack.
• Activation record consists of:

‒ the return address in the calling program,
‒ the return value from the function, and
‒ the local variables inside the function.

Programming and Data Structure 54

main()
{
 ……..
 x = gcd (a, b);
 ……..
}

int gcd (int x, int y)
{
 ……..
 ……..
 return (result);
}

Return Addr
Return Value

Local
Variables

Before call After call After return

ST
A

CK

Activation
record

Programming and Data Structure 55

main()
{
 ……
 x=ncr(a,b);
 ……
}

int ncr (int n,int r)
{
 return (fact(n)/
 fact(r)/fact(n-r));
}

LV1, RV1, RA1

Before call Call fact ncr
returns

int fact (int n)
{
 ………
 return(result);
}

3 times

LV1, RV1, RA1

fact
returns

LV1, RV1, RA1

LV2, RV2, RA2

Call ncr

3 times

Programming and Data Structure 56

What happens for recursive calls?
• What we have seen ….

‒ Activation record gets pushed into the stack when
a function call is made.

‒ Activation record is popped off the stack when the
function returns.

• In recursion, a function calls itself.
‒ Several function calls going on, with none of the
function calls returning back.
• Activation records are pushed onto the stack continuously.
• Large stack space required.
• Activation records keep popping off, when the
termination condition of recursion is reached.

Programming and Data Structure 57

• We shall illustrate the process by an example
of computing factorial.
‒ Activation record looks like:

Return Addr
Return Value

Local
Variables

Programming and Data Structure 58

Example:: main() calls fact(3)

int fact (n)
int n;
{
 if (n == 0)
 return (1);
 else
 return (n * fact(n-1));
}

main()
{
 int n;
 n = 3;
 printf (”%d \n”, fact(n));
}

Programming and Data Structure 59

RA .. main
-

n = 3

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
-

n = 1

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
-

n = 1
RA .. fact

1
n = 0

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
1*1 = 1
n = 1

RA .. main
-

n = 3
RA .. fact
2*1 = 2
n = 2

RA .. main
3*2 = 6
n = 3

TRACE OF THE STACK DURING EXECUTION

main calls
fact

fact
returns to
main

Programming and Data Structure 60

Do Yourself

• Trace the activation records for the following version of
Fibonacci sequence.#include <stdio.h>

int f (int n)
{
 int a, b;
 if (n < 2) return (n);
 else {
 a = f(n-1);
 b = f(n-2);
 return (a+b);
 }
}

main() {
 printf(ʺFib(4) is: %d \nʺ, f(4));
}

Return Addr
(either main,

or X, or Y)

Return Value

Local
Variables
(n, a, b)

X

Y

main

61

Storage Class of Variables

Programming and Data Structure 62

What is Storage Class?

• It refers to the permanence of a variable, and
its scope within a program.

• Four storage class specifications in C:
‒ Automatic: auto
‒ External: extern

‒ Static: static

‒ Register: register

Programming and Data Structure 63

Automatic Variables
• These are always declared within a function
and are local to the function in which they are
declared.
‒ Scope is confined to that function.

• This is the default storage class specification.
‒ All variables are considered as auto unless
explicitly specified otherwise.

‒ The keyword auto is optional.
‒ An automatic variable does not retain its value once
control is transferred out of its defining function.

Programming and Data Structure 64

#include <stdio.h>

int factorial(int m)
{
 auto int i;
 auto int temp=1;
 for (i=1; i<=m; i++)
 temp = temp * i;
 return (temp);
}

main()
{
 auto int n;
 for (n=1; n<=10; n++)
 printf (ʺ%d! = %d \nʺ,
 n, factorial (n));
}

Programming and Data Structure 65

Static Variables
• Static variables are defined within individual functions

and have the same scope as automatic variables.
• Unlike automatic variables, static variables retain their

values throughout the life of the program.
‒ If a function is exited and re-entered at a later time, the static

variables defined within that function will retain their
previous values.

‒ Initial values can be included in the static variable
declaration.
• Will be initialized only once.

• An example of using static variable:
‒ Count number of times a function is called.

Programming and Data Structure 66

#include <stdio.h>

int factorial (int n)
{
 static int count=0;
 count++;
 printf (ʺn=%d, count=%d \nʺ, n, count);
 if (n == 0) return 1;
 else return (n * factorial(n-1));
}

main()
{
 int i=6;
 printf (ʺValue is: %d \nʺ, factorial(i));
}

EXAMPLE 1

Programming and Data Structure 67

• Program output:
 n=6, count=1
 n=5, count=2
 n=4, count=3
 n=3, count=4
 n=2, count=5
 n=1, count=6
 n=0, count=7
 Value is: 720

Programming and Data Structure 68

#include <stdio.h>

int fib (int n)
{
 static int count=0;
 count++;
 printf (ʺn=%d, count=%d \nʺ, n, count);
 if (n < 2) return n;
 else return (fib(n-1) + fib(n-2));
}

main()
{
 int i=4;
 printf (ʺValue is: %d \nʺ, fib(i));
}

EXAMPLE 2

Programming and Data Structure 69

• Program output:
 n=4, count=1
 n=3, count=2
 n=2, count=3
 n=1, count=4
 n=0, count=5
 n=1, count=6
 n=2, count=7
 n=1, count=8
 n=0, count=9
 Value is: 3 [0,1,1,2,3,5,8,….]

f(4)

f(3) f(2)

f(1)f(2) f(0)f(1)

f(1) f(0)

Programming and Data Structure 70

Register Variables

• These variables are stored in high-speed
registers within the CPU.
‒ Commonly used variables may be declared as
register variables.

‒ Results in increase in execution speed.
‒ The allocation is done by the compiler.

Programming and Data Structure 71

External Variables

• They are not confined to single functions.
• Their scope extends from the point of
definition through the remainder of the
program.
‒ They may span more than one functions.
‒ Also called global variables.

• Alternate way of declaring global variables.
‒ Declare them outside the function, at the
beginning.

Programming and Data Structure 72

#include <stdio.h>

int count=0; /** GLOBAL VARIABLE **/
int factorial (int n)
{
 count++;
 printf (ʺn=%d, count=%d \nʺ, n, count);
 if (n == 0) return 1;
 else return (n * factorial(n-1));
}

main() {
 int i=6;
 printf (ʺValue is: %d \nʺ, factorial(i));
 printf (ʺCount is: %d \nʺ, count);
}

73

Some Examples on Recursion

Programming and Data Structure

74

GCD Computation … Correct Version
#include <stdio.h>
int gcd (m, n)
int m, n;
{
 if (m == 0) return n;
 if (n == 0) return m;
 if (m == n) return (m);
 if (m > n)
 return gcd (m%n, n);
 else
 return gcd (m, n%m);
}

int main()
{
 int num1, num2;
 scanf ("%d %d", &num1, &num2);
 printf ("\nGCD of %d and %d is %d", num1, num2, gcd(num1,num2));
}

Autumn Semester 2019 Programming and Data Structure

GCD of 12 and 12 is 12
GCD of 15 and 0 is 15
GCD of 0 and 25 is 25
GCD of 156 and 66 is 6
GCD of 75 and 925 is 25

75

Compute power ab

// Compute a to the power b
#include <stdio.h>

long int power (int a, int b)
{
 if (b == 0) return (1);
 else return (a * power(a,b-1));
}

int main()
{
 int x, y;
 long int result;
 scanf ("%d %d", &x, &y);
 result = power (x, y);
 printf ("\n%d to the power %d is %ld", x, y, result);
}

Autumn Semester 2019 Programming and Data Structure

3 to the 4 is 81
2 to the power 16 is 65536
2 to the power 8 is 256
17 to the power 4 is 83521
436 to the power 0 is 1

76

Sum of digits of a number
// Find sum of the digits of a number
#include <stdio.h>

int digitsum (int num)
{
 int digit;
 if (num == 0) return (0);
 else {
 digit = num % 10;
 return (digit + digitsum(num/10));
 }
}

int main()
{
 int a;
 scanf ("%d", &a);
 printf ("\nSum of digits of %d is %d", a, digitsum(a));
}

Autumn Semester 2019 Programming and Data Structure

Sum of digits of 25 is 7
Sum of digits of 23863 is 22
Sum of digits of 11111 is 5
Sum of digits of 0 is 0
Sum of digits of 9999 is 36

77

Decimal to Binary
// Print a decimal number in binary
#include <stdio.h>

void dec2bin (int n)
{
 if (n == 0) return;
 else {
 dec2bin (n/2);
 printf ("%2d", n%2);
 }
}

int main()
{
 int dec;
 scanf ("%d", &dec);
 printf ("\nBinary of %d is", dec);
 dec2bin (dec);
}

Autumn Semester 2019 Programming and Data Structure

Binary of 25 is 1 1 0 0 1
Binary of 12 is 1 1 0 0
Binary of 128 is 1 0 0 0 0 0 0 0
Binary of 254 is 1 1 1 1 1 1 1 0

