
Palash Dey

Department of Computer Science & Engg.

Indian Institute of Technology

Kharagpur

Slides credit: Prof. Indranil Sen Gupta

Control Statements

1

Programming and Data Structure

• Allow different sets of instructions to be
executed depending on the outcome of a
logical test.
‒ Whether TRUE or FALSE.
‒ This is called branching.

• Some applications may also require that a set
of instructions be executed repeatedly,
possibly again based on some condition.
‒ This is called looping.

What do they do?

2

Programming and Data Structure

• Using relational operators.
‒ Four relation operators: <, <=, >, >=
‒ Two equality operators: ==, !=

• Using logical operators / connectives.
‒ Two logical connectives: &&, | |
‒ Unary negation operator: !

How do we specify the conditions?

3

Programming and Data Structure

count <= 100

(math+phys+chem)/3 >= 60

(sex==’M’) && (age>=21)

(marks>=80) && (marks<90)

(balance>5000) || (no_of_trans>25)

!(grade==‘A’)

!((x>20) && (y<16))

Examples

4

Programming and Data Structure

• Zero
‒ Indicates FALSE.

• Non-zero
‒ Indicates TRUE.
‒ Typically the condition TRUE is represented by
the value ‘1’.

The conditions evaluate to …

5

Programming and Data Structure

• Diamond symbol (decision symbol) - indicates
decision is to be made.
‒ Contains an expression that can be TRUE or FALSE.
‒ Test the condition, and follow appropriate path.

• Single-entry / single-exit structure.

• General syntax:
 if (condition) { …….. }

‒ If there is a single statement in the block, the braces
can be omitted.

Branching: The if Statement

6

Programming and Data Structure

A decision can be
made on any
expression.

zero - false

nonzero - true

if (grade>=60)
{
 printf(“Passed \n”);
 printf(“Good luck\n”);
}

7

grade >= 60

print “passed; good luck”

true

false

Programming and Data Structure

#include <stdio.h>
main()
{
 int a,b,c;
 scanf (ʺ%d %d %dʺ, &a, &b, &c);
 if ((a>=b) && (a>=c))
 printf (ʺ\n The largest number is: %dʺ, a);
 if ((b>=a) && (b>=c))
 printf (ʺ\n The largest number is: %dʺ, b);
 if ((c>=a) && (c>=b))
 printf (ʺ\n The largest number is: %dʺ, c);
}

Example

8

Programming and Data Structure

• Dangerous error
‒ Does not ordinarily cause syntax errors.
‒ Any expression that produces a value can be
used in control structures.

‒ Nonzero values are true, zero values are false.

• Example:
 if (payCode = = 4)  
 printf(ʺYou get a bonus!\nʺ);

 if (payCode = 4)  
 printf(ʺYou get a bonus!\nʺ);

Confusing Equality (==) and Assignment (=) Operators

9

WRONG

Programming and Data Structure

if (10<20) { a = b + c; printf (ʺ%dʺ, a); }

if ((a>b) && (x=10)) { …………… }

if (1) { ……………… }

if (0) { ……………… }

Some Examples

10

Programming and Data Structure

• Also a single-entry / single-exit structure.

• Allows us to specify two alternate blocks of
statements, one of which is executed
depending on the outcome of the condition.

• General syntax:
if (condition) { …… block 1 …… }
else { …… block 2 …… }

‒ If a block contains a single statement, the braces
can be deleted.

Branching: The if-else Statement

11

Programming and Data Structure 12

if (grade >= 60)  
 printf ("Passed\n");
else  
 printf ("Failed\n");

grade >= 60 print “Passed”
truefalse

print “Failed”

Programming and Data Structure

• It is possible to nest if-else statements, one
within another.

• All if statements may not be having the
“else” part.
‒ Confusion??

• Rule to be remembered:
‒ An “else” clause is associated with the closest
preceding unmatched “if”.

‒ Some examples shown next.

Nesting of if-else Structures

13

Programming and Data Structure

if e1 s1
else if e2 s2

if e1 s1
else if e2 s2
else s3

if e1 if e2 s1
else s2
else s3

if e1 if e2 s1
else s2

14

?

Programming and Data Structure

if e1 s1 if e1 s1
else if e2 s2 else if e2 s2

if e1 s1 if e1 s1
else if e2 s2 else if e2 s2
else s3 else s3

if e1 if e2 s1 if e1 if e2 s1

else s2 else s2
else s3 else s3

if e1 if e2 s1 if e1 if e2 s1
else s2 else s2

15

Programming and Data Structure

#include <stdio.h>
main()
{
 int a,b,c;
 scanf (ʺ%d %d %dʺ, &a, &b, &c);
 if (a>=b)
 if (a>=c) printf (ʺ\n The largest is: %dʺ, a);
 else printf (ʺ\n The largest is: %dʺ, c);
 else
 if (b>=c)
 printf (ʺ\n The largest is: %dʺ, b);
 else printf (ʺ\n The largest is: %dʺ,

c);
}

Example

16

Programming and Data Structure

#include <stdio.h>
main()
{
 int a,b,c;
 scanf (ʺ%d %d %dʺ, &a, &b, &c);
 if ((a>=b) && (a>=c))
 printf (ʺ\n Largest number is: %dʺ, a);
 else if (b>c)
 printf (ʺ\n Largest number is: %dʺ, b);
 else
 printf (ʺ\n Largest number is: %dʺ, c);
}

Example

17

Programming and Data Structure

• This makes use of an expression that is either
true or false. An appropriate value is selected,
depending on the outcome of the logical
expression.

• Example:
interest = (balance>5000) ? balance*0.2 : balance*0.1;

The Conditional Operator ? :

18

Returns a value

Programming and Data Structure

• Examples:

x = ((a>10) && (b<5)) ? a+b : 0

(marks>=60) ? printf(ʺPassed \nʺ) : printf(ʺFailed \nʺ);

19

Programming and Data Structure

• This causes a particular group of statements to
be chosen from several available groups.
‒ Uses “switch” statement and “case” labels.
‒ Syntax of the “switch” statement:

switch (expression) {
 case expression-1: { …… }
 case expression-2: { …… }

 case expression-m: { …… }
 default: { ……… }
}

where “expression” evaluates to int or char

The switch Statement

20

Programming and Data Structure

switch (letter)
{
 case 'A':
 printf (ʺFirst letter \nʺ);
 break;
 case 'Z':
 printf (ʺLast letter \nʺ);
 break;
 default :
 printf (ʺMiddle letter \nʺ);
 break;
}

Example

21

Programming and Data Structure

• Used to exit from a switch or terminate
from a loop.
‒ Already illustrated in the previous example.

• With respect to “switch”, the “break”
statement causes a transfer of control out of
the entire “switch” statement, to the first
statement following the “switch” statement
block.

The break Statement

22

Programming and Data Structure

switch (choice = getchar()) {

 case ’r’:
 case ’R’: printf (ʺRED \nʺ);
 break;
 case ’g’:
 case ’G’: printf (ʺGREEN \nʺ);
 break;
 case ’b’:
 case ’B’: printf (ʺBLUE \nʺ);
 break;
 default: printf (ʺInvalid choice \nʺ);

}

Example

23

Programming and Data Structure

switch (choice = toupper(getchar())) {

 case ’R’: printf (ʺRED \nʺ);
 break;
 case ’G’: printf (ʺGREEN \nʺ);
 break;
 case ’B’: printf (ʺBLUE \nʺ);
 break;
 default: printf (ʺInvalid choice \nʺ);
}

Example

24

Autumn Semester 2019 Programming and Data Structure

• The “switch” statement also constitutes a
single-entry / single-exit structure.

25

switch statement

A Look Back at Arithmetic Operators: the
Increment and Decrement

26

Programming and Data Structure

• Both of these are unary operators; they
operate on a single operand.

• The increment operator causes its operand to
be increased by 1.
‒ Example: a++, ++count

• The decrement operator causes its operand to
be decreased by 1.
‒ Example: i--, --distance

Increment (++) and Decrement (--)

27

Programming and Data Structure

• Operator written before the operand (++i, --i)
‒ Called pre-increment operator.
‒ Operator will be altered in value before it is
utilized for its intended purpose in the program.

• Operator written after the operand (i++, i--)
‒ Called post-increment operator.
‒ Operand will be altered in value after it is utilized
for its intended purpose in the program.

28

Programming and Data Structure

 Initial values :: a = 10; b = 20;

 x = 50 + ++a; a = 11, x = 61

 x = 50 + a++; x = 60, a = 11

 x = a++ + --b; b = 19, x = 29, a = 11

 x = a++ – ++a; Undefined value (implementation
 dependent)

Examples

29

Called side effects:: while calculating some values, something else get
changed.

Control Structures that Allow Repetition

30

• Loop: Group of instructions that are executed
repeatedly while some condition remains true.

 How loops are controlled?

Types of Repeated Execution

31

Sentinel
Controlled

Counter
Controlled

Condition
Controlled

Programming and Data Structure

Programming and Data Structure

• Counter-controlled repetition
‒ Definite repetition ‒ know how many times loop will

execute.
‒ Control variable used to count repetitions.

• Condition-controlled repetition
‒ Loop executes as long as some specified condition is true.

• Sentinel-controlled repetition
‒ Indefinite repetition.
‒ Used when number of repetitions not known.
‒ Sentinel value indicates “end of data”.

32

Programming and Data Structure

• Counter-controlled repetition requires:

– name of a control variable (or loop counter).

– initial value of the control variable.

– condition that tests for the final value of the

control variable (i.e., whether looping should

continue).

– increment (or decrement) by which the control

variable is modified each time through the loop.

Counter-controlled Repetition

33

Read 5 integers
and display the
value of their

sum.

Counter Controlled Loop

34

int counter=1, sum=0, n;

while (counter <6) {
 scanf (“%d”, &n);
 sum = sum + n;
 counter++;
}

Programming and Data Structure 35

int counter, sum=0, n;

for (counter=1; counter<6; counter++)
{
 scanf (ʺ%dʺ, &n);
 sum = sum + n;
}
 printf (ʺ\nSum is: %dʺ, sum);

Programming and Data Structure

• The “while” statement is used to carry out looping
operations, in which a group of statements is
executed repeatedly, as long as some condition
remains satisfied.

while Statement

36

while (condition)
 statement_to_repeat;

while (condition)
{
 statement_1;
 ...
 statement_N;
}

Programming and Data Structure 37

C

statement(s)

true

false

Single-entry /
single-exit
structure

Programming and Data Structure

int digit = 0;

while (digit <= 9)
 printf (ʺ%d \nʺ, digit++);

while :: Examples

38

int weight=100;

while (weight > 65)
{
 printf (ʺGo, exercise,ʺ);
 printf (ʺthen come back. \nʺ);
 printf (ʺEnter your weight:ʺ);
 scanf (ʺ%dʺ, &weight);
}

Example: Compute 1+2+…+N

39

START

READ N

SUM = 0
COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {
 int N, count, sum;
 scanf (ʺ%dʺ, &N);
 sum = 0;
 count = 1;
 while (count <= N) {
 sum = sum + count;
 count = count + 1;
 }
 printf (ʺSum=%d\nʺ, sum);
 return 0;
}

Programming and Data Structure

printf (ʺEnter positive numbers, end with -1.0\nʺ);
max = 0.0;
scanf(ʺ%fʺ, &next);

while (next != -1.0f) {
 if (next > max)
 max = next;
 scanf(ʺ%fʺ, &next);
}
printf (ʺThe maximum number is %f\nʺ, max) ;

Example: Maximum of inputs

40

Example of Sentinel-controlled loop
Inputs: 10 5 100 25 68 -1

Programming and Data Structure

Programming and Data Structure

• Similar to “while”, with the difference that the check
for continuation is made at the end of each pass.
‒ In “while”, the check is made at the beginning.

• Loop body is executed at least once.

do-while Statement

41

do {  
 statement-1;
 statement-2;

 statement-n;  
 } while (condition);

do  
 statement_to_repeat;
while (condition);

Programming and Data Structure 42

C

statement(s)

true

false

Single-entry /
single-exit
structure

Programming and Data Structure

int digit = 0;

do
 printf (ʺ%d \nʺ, digit++);
while (digit <= 9);

do-while :: Examples

43

int weight;
do {
 printf (ʺGo, exercise, ʺ);
 printf (ʺthen come back. \nʺ);
 printf (ʺEnter your weight:ʺ);
 scanf (ʺ%dʺ, &weight);
} while (weight > 65);

Programming and Data Structure

• The “for” statement is the most commonly used
looping structure in C.

• General syntax:

for (expression1; expression2; expression3)
 statement-to-repeat;

for (expression1; expression2; expression3)
{
 statement_1;
 :
 statement_N;
}

for Statement

44

Programming and Data Structure

• How it works?
‒ “expression1” is used to initialize some variable
(called index) that controls the looping action.

‒ “expression2” represents a condition that must be
true for the loop to continue.

‒ “expression3” is used to alter the value of the
index initially assigned by “expression1”.

45

int digit;

for (digit=0; digit<=9;digit++)

 printf (ʺ%d \nʺ, digit);

int digit;

for (digit=9;digit>=0;digit--)

 printf (ʺ%d \nʺ, digit);

Programming and Data Structure 46

Single-entry /
single-exit
structure

expression2

statement(s)

true

false

expression1

expression3

Programming and Data Structure

int fact = 1, i, N;

scanf (ʺ%dʺ, &N);

for (i=1; i<=N; i++)
 fact = fact * i;
printf (ʺ%d \nʺ, fact);

for :: Examples

47

int sum = 0, N, i;

scanf (ʺ%dʺ, &N);

for (i=1; i<=N, i++)
 sum = sum + i * i;

printf (ʺ%d \nʺ, sum);

Compute factorial
Compute 12+22+…+N2

Print
* * * * *
* * * * *
* * * * *

2-D Figure

48

#define ROWS 3
#define COLS 5
....
for (row=1; row<=ROWS; row++) {
 for (col=1; col<=COLS; col++) {
 printf(ʺ*ʺ);
 }
 printf(ʺ\nʺ);
}

Programming and Data Structure

Print
*
* *
* * *
* * * *
* * * * *

Another 2-D Figure

49

#define ROWS 5
....
int row, col;
for (row=1; row<=ROWS; row++) {
 for (col=1; col<=row; col++) {
 printf(ʺ* ʺ);
 }
 printf(ʺ\nʺ);
}

Programming and Data Structure

• The comma operator
‒ We can give several statements separated by commas
in place of “expression1”, “expression2”, and
“expression3”.

for (fact=1, i=1; i<=10; i++)
 fact = fact * i;

for (sum=0, i=1; i<=N; i++)
 sum = sum + i*i;

Programming and Data Structure 50

expression2

statement(s)

true

false

expression1

expression3

Programming and Data Structure

• Arithmetic expressions
‒ Initialization, loop-continuation, and increment
can contain arithmetic expressions.
 for (k=x; k <= 4*x*y; k += y/x)

• "Increment" may be negative (decrement)
 for (digit=9; digit>=0; digit--)

• If loop continuation condition initially false:

‒ Body of for structure not performed.
‒ Control proceeds with statement after for
structure.

for :: Some Observations

51

A common mistake (; at the end)

52Programming and Data Structure

int fact = 1, i;

for (i=1; i<=10; i++)
 fact = fact * i;
printf (ʺ%d \nʺ, fact);

int fact = 1, i;

for (i=1; i<=10; i++);
 fact = fact * i;
printf (ʺ%d \nʺ, fact);

“Loop body” will execute only
once!

Programming and Data Structure

while (1) {
 statements
}

Specifying “Infinite Loop”

53

for (; ;)
{
 statements
}

do {
 statements
} while (1);

Programming and Data Structure

• Break out of the loop { }
‒ can use with

• while
• do while
• for
• switch

‒ does not work with
• if
• else

• Causes immediate exit from a while, do/while, for or switch
structure.

• Program execution continues with the first statement after
the structure.

The “break” Statement Revisited

54

Programming and Data Structure

#include <stdio.h>
main()
{
 int fact, i;

 fact = 1; i = 1;

 while (i<10) { /* break when fact >100 */
 fact = fact * i;
 if (fact > 100) {
 printf (ʺFactorial of %d above 100ʺ, i);
 break; /* break out of the loop */
 }
 i++;
 }
}

An example with “break”

55

Programming and Data Structure

• Skips the remaining statements in the body of a
while, for or do/while structure.

‒ Proceeds with the next iteration of the loop.

• while and do/while
‒ Loop-continuation test is evaluated immediately
after the continue statement is executed.

• for structure

– expression3 is evaluated, then expression2 is
evaluated.

The “continue” Statement

56

Programming and Data Structure

fact = 1; i = 1; /* a program to calculate 10! */
while (1) {
 fact = fact * i;
 i ++;
 if (i<10)
 continue; /* not done yet ! Go to loop and

 perform next iteration*/
 break;
}

An example with “break” and “continue”

57

Some Examples

58

Example: SUM = 12 + 22 + 32 + …+ N2

59

int main () {
 int N, count, sum;
 scanf (ʺ%dʺ, &N) ;
 sum = 0;
 count = 1;
 while (count <= N) {
 sum = sum + count∗count;
 count = count + 1;
 }
 printf (ʺSum = %d\nʺ, sum) ;
 return 0;
}

Programming and Data Structure

Example: Computing Factorial

60

int main () {
 int N, count, prod;
 scanf (“%d”, &N) ;
 prod = 1;
 for (count=1;count <= N; count++) {
 prod = prod*count;
 printf (ʺFactorial = %d\nʺ, prod) ;
 return 0;
}

Programming and Data Structure

Example: Computing ex series up to N terms

61

ex = 1 + x/1! + x2/2! + x3/3! + …

Programming and Data Structure

Example: Computing ex series up to 4 decimal places

62

START

READ X

TERM = 1
SUM = 0

COUNT = 1

SUM = SUM + TERM
TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
TERM < 0.0001? OUTPUT SUM

STOP

YESNO

Programming and Data Structure

Programming and Data Structure

#include <stdio.h>
main()
{
 int n, i=2;
 scanf (”%d”, &n);
 while (i < n) {
 if (n % i == 0) {
 printf (”%d is not a prime \n”, n);
 exit;
 }
 i++;
 }
 printf (”%d is a prime \n”, n);
}

Example: Test if a number is prime or not

63

Programming and Data Structure

#include <stdio.h>
#include <math.h>
main()
{
 int n, i=3;
 scanf (”%d”, &n);
 while (i < sqrt(n)) {
 if (n % i == 0) {
 printf (”%d is not a prime \n”, n);
 exit(0);
 }
 i = i + 2;
 }
 printf (”%d is a prime \n”, n);
}

More efficient??

64

Programming and Data Structure

#include <stdio.h>
main()
{
 int n, sum=0;
 scanf (”%d”, &n);
 while (n != 0) {
 sum = sum + (n % 10);
 n = n / 10;
 }
 printf (”The sum of digits of the number is %d \n”, sum);
}

Example: Find the sum of digits of a number

65

Programming and Data Structure

#include <stdio.h>
main()
{
 int dec;
 scanf (”%d”, &dec);
 do
 {
 printf (”%2d”, (dec % 2));
 dec = dec / 2;
 } while (dec != 0);
 printf (”\n”);
}

Example: Decimal to binary conversion

66

Programming and Data Structure

#include <stdio.h>
main()
{
 int A, B, temp;
 scanf (”%d %d”, &A, &B);
 if (A > B)
 {temp = A; A = B; B = temp;}
 while ((B % A) != 0) {
 temp = B % A;
 B = A;
 A = temp;
 }
 printf (”The GCD is %d”, A);
}

Example: Compute GCD of two numbers

67

12) 45 (3
 36
 9) 12 (1
 9
 3) 9 (3
 9
 0

Initial: A=12, B=45
Iteration 1: temp=9,
B=12,A=9
Iteration 2: temp=3, B=9,
A=3
 B % A = 0 ➔ GCD is 3

Programming and Data Structure

• Additional assignment operators:
+ =, ‒ =, * =, / =, % =

a += b is equivalent to a = a + b
a *= (b+10) is equivalent to a = a * (b + 10)
and so on.

Shortcuts in Assignments

68

More about scanf and printf

69

Programming and Data Structure

• General syntax:
scanf (control string, arg1, arg2, …, argn);

‒ “control string refers to a string typically containing data
types of the arguments to be read in;

‒ the arguments arg1, arg2, … represent pointers to data items
in memory.
Example: scanf (ʺ%d %f %cʺ, &a, &average, &type);

• The control string consists of individual groups of
characters, with one character group for each input
data item.
‒ ‘%’ sign, followed by a conversion character.

Entering input data :: scanf function

70

Programming and Data Structure

‒ Commonly used conversion characters:
c single character
d decimal integer
f floating-point number
s string terminated by null character
X hexadecimal integer

‒ We can also specify the maximum field-width
of a data item, by specifying a number
indicating the field width before the conversion
character.
Example: scanf (ʺ%3d %5dʺ, &a, &b);

71

Programming and Data Structure

• General syntax:
printf (control string, arg1, arg2, …, argn);

‒ “control string refers to a string containing formatting
information and data types of the arguments to be output;

‒ the arguments arg1, arg2, … represent the individual
output data items.

• The conversion characters are same as in
scanf.

• Can specify the width of the data fields.
‒ %5d, %7.2f, etc.

Writing output data :: printf function

72

Programming and Data Structure

• Examples:
printf (ʺThe average of %d and %d is %fʺ, a, b, avg);
printf (ʺHello \nGood \nMorning \nʺ);
printf (ʺ%3d %3d %5dʺ, a, b, a*b+2);
printf (ʺ%7.2f %5.1fʺ, x, y);

• Many more options are available:
‒ Read from the book.
‒ Practice them in the lab.

• String I/O:
‒ Will be covered later in the class.

73

An example

74Programming and Data Structure

#include <stdio.h>
main()
{
 int fahr;

 for (fahr=0; fahr<=100; fahr+=20)
 printf (ʺ%3d %6.3f\n”,
 fahr, (5.0/9.0)*(fahr-32));
}

 0 -17.778
 20 -6.667
 40 4.444
 60 15.556
 80 26.667
100 37.778

Print with leading zeros

75Programming and Data Structure

#include <stdio.h>
main()
{
 int fahr;

 for (fahr=0; fahr<=100; fahr+=20)
 printf (“%03d %6.3f\n”,
 fahr, (5.0/9.0)*(fahr-32));
}

000 -17.778
020 -6.667
040 4.444
060 15.556
080 26.667
100 37.778

