
 1

Algorithm Analysis

 2

Analysis of Algorithms

• How much resource is required ?

• Measures for efficiency

– Execution time  time complexity

– Memory space  space complexity

• Observation :

– The larger amount of input data an algorithm has, the
larger amount of resource it requires.

– Complexities are functions of the amount of input
data (input size).

 3

What do we use for a yardstick?

• The same algorithm will run at different speeds

and will require different amounts of space.

– When run on different computers, different

programming languages, different compilers.

• But algorithms usually consume resources in some

fashion that depends on the size of the problem

they solve.

– Some parameter n (for example, number of elements

to sort).

 4

An example of a sorting algorithm

• We run this sorting

algorithm on two

different computers,

and note the time (in

milliseconds) for

different sizes of

input.

Array Size
n

Home
Computer

Desktop
Computer

125 12.5 2.8

250 49.3 11.0

500 195.8 43.4

1000 780.3 72.9

2000 3114.9 690.5

 5

0

500

1000

1500

2000

2500

3000

3500

125 250 500 1000 2000

Home

Desktop

 6

Contd.

• Home Computer :

 f1(n) = 0.0007772 n2 + 0.00305 n + 0.001

• Desktop Computer :
 f2(n) = 0.0001724 n2 + 0.00040 n + 0.100

– Both are quadratic function of n.

– The shape of the curve that expresses the running
time as a function of the problem size stays the same.

 7

Complexity Classes

• The running time for different algorithms fall
into different complexity classes.

– Each complexity class is characterized by a different
family of curves.

– All curves in a given complexity class share the same
basic shape.

• The O-notation is used for talking about the
complexity classes of algorithms.

 8

Running time of algorithms

Assume speed is 107 instructions per second.

sizen 10 20 30 50 100 1000 10000

n .001ms .002ms .003ms .005ms .01ms .1ms 1ms

nlogn .003ms .008ms .015ms .03ms .07ms 1ms 13ms

n2 .01ms .04ms .09ms .25ms 1ms 100ms 10s

n3 .1ms .8ms 2.7ms 12.5ms 100ms 100s 28h

2n .1ms .1s 100s 3y 3x1013c inf inf

• The complexity classes:

 log2n

 n

 n log2n

 n2

 n3

 2n

 n!

 9

Complexity
increases

 10

Introducing the language of O-notation

• Definition:

 f(n) = O(g(n)) if there exists positive constants c
and n0 such that f(n) c.g(n) when n  n0.

• The big-Oh notation is used to categorize the
complexity class of algorithms.

– It gives an upper bound.

– Other measures also exist, like small-Oh, Omega, Theta,
etc.

Examples

• f(n) = 2n2+4n+5 is O(n2).
– One possibility: c=11, and no=1.

• f(n) = 2n2+4n+5 is also O(n3),O(n4),etc.
– One possibility: c=11, and no=1.

• f(n) = n(n-1)/2 is O(n2).
– One possibility: c=1/2, and no=1.

• f(n) = 5n4+log2n is O(n4).
– One possibility: c=6, and no=1.

• f(n) = 75 is O(1).
– One possibility: c=75, and no=1.

 11

Complexities of Known Algorithms

12

Algorithm Best-case Average-case Worst-case

Selection sort O(n2) O(n2) O(n2)

Insertion sort O(n) O(n2) O(n2)

Bubble sort O(n) O(n2) O(n2)

Quick sort O(n log2n) O(n log2n) O(n2)

Merge sort O(n log2n) O(n log2n) O(n log2n)

Linear search O(1) O(n) O(n)

Binary search O(1) O(log2n) O(log2n)

13

Observations

• There is a big difference between polynomial time

complexity and exponential time complexity.

• Hardware advances affect only efficient algorithms

and do not help inefficient algorithms.

	Algorithm Analysis
	Analysis of Algorithms
	What do we use for a yardstick?
	An example of a sorting algorithm
	PowerPoint Presentation
	Contd.
	Complexity Classes
	Running time of algorithms
	Slide 9
	Introducing the language of O-notation
	Examples
	Complexities of Known Algorithms
	Observations

