
Programming and Data Structure

Palash Dey

Department of Computer Science & Engg.

Indian Institute of Technology

Kharagpur

Slides credit: Prof. Indranil Sen Gupta

1

Some General Announcements

2

Programming and Data Structure

About the Course

• Will be conducted with a L-T-P rating of 3-0-0.

• Laboratory with a L-T-P of 0-1-3.

• Evaluation in the theory course:
‒ Mid-semester 30%
‒ End-semester 50%
‒ Two class tests and attendance 20%

3

Programming and Data Structure

Course Materials

• The slides for the lectures will be made
available on the web (in PDF form).

 http://cse.iitkgp.ac.in/~pds/current/

• All important announcements will be put
up on the web page.

4

http://cse.iitkgp.ac.in/~pds/current/

Programming and Data Structure

ATTENDANCE IN THE CLASSES IS
MANDATORY

Students having poor attendance will be
penalized in terms of the final grade.

5

Programming and Data Structure

Text/Reference Books & Notes

1. Programming with C (Second Edition)
 B.S. Gottfried, Schaum’s Outline Series, Tata McGraw-Hill,

2006.

2. Programming in ANSI C (Second Edition)
 E. Balagurusamy, Tata McGraw-Hill, New Delhi, 1992.

3. Data structures
 S. Lipschutz, Schaum’s Outline Series, Tata McGraw-Hill, 2006.

4. Data structures using C and C++ (Second Edition)
 Y. Langsam, M.J. Augenstein, A.M. Tanenbaum, Prentice-Hall of

India.

5. http://cse.iitkgp.ac.in/~pds/notes/

6

Introduction

7

Programming and Data Structure

What is a Computer?

Central
Processing

Unit
(CPU)

Input
Device

Output
Device

Main Memory

Storage Peripherals

8

Programming and Data Structure

• CPU
‒ All computations take place here in order for the
computer to perform a designated task.

‒ It has a number of registers which temporarily
store data and programs (instructions).

‒ It has circuitry to carry out arithmetic and logic
operations, take decisions, etc.

‒ It retrieves instructions from the memory (fetch),
interprets (decode) them, and performs the
requested operation (execute).

9

Programming and Data Structure

• Main Memory
‒ Uses semiconductor technology.
‒ Memory sizes in the range of 4 to 16 Gbytes are
typical today.

‒ Some measures to be remembered
• 1 K (kilo) = 210 (= 1024)
• 1 M (mega) = 220 (= one million approx.)
• 1 G (giga) = 230 (= one billion approx.)
• 1 T (tera) = 240 (= one trillion approx.)
• 1 P (peta) = 250

10

Programming and Data Structure

• Input Device
‒ Keyboard, Mouse, Scanner

• Output Device
‒ Monitor, Printer

• Storage Peripherals
‒ Magnetic Disks: hard disk, floppy disk

• Allows direct (semi-random) access
‒ Optical Disks: CDROM, CD-RW, DVD, BlueRay

• Allows direct (semi-random) access
‒ Flash Memory and Solid State Drive

• Allows direct access
‒ Magnetic Tape: DAT

• Only sequential access

11

Programming and Data Structure

How does a computer work?

• Stored program concept.
‒ Main difference from a calculator.

• What is a program?
‒ Set of instructions for carrying out a specific
task.

• Where are programs stored?
‒ In secondary memory, when first created.
‒ Brought into main memory, during execution.

12

Programming and Data Structure

Number System :: The Basics

• We are accustomed to using the so-called
decimal number system.
‒ Ten digits :: 0,1,2,3,4,5,6,7,8,9
‒ Every digit position has a weight which is a power

of 10.

• Example:
234. = 2 x 102 + 3 x 101 + 4 x 100

250.67 = 2 x 102 + 5 x 101 + 0 x 100 + 6 x 10-1 +
7 x 10-2

13

Programming and Data Structure

Contd.

• A digital computer is built out of tiny
electronic switches.
‒ From the viewpoint of ease of manufacturing and
reliability, such switches can be in one of two
states, ON and OFF.

‒ A switch can represent a digit in the so-called
binary number system, 0 and 1.

• A computer works based on the binary
number system.

14

• Binary number system
‒ Two digits :: 0 and 1
‒ Every digit position has a weight which is a

power of 2.

• Example:
 1110 = 1 x 23 + 1 x 22 + 1 x 21 + 0 x 20
 = 14 (in decimal)

Programming and Data Structure 15

Programming and Data Structure

Concept of Bits and Bytes

• Bit
‒ A single binary digit (0 or 1).

• Nibble
‒ A collection of four bits (say, 0110).

• Byte
‒ A collection of eight bits (say, 01000111).

• Word
‒ Depends on the computer.
‒ Typically 4 or 8 bytes (that is, 32 or 64 bits).

16

Programming and Data Structure

Contd.

• An k-digit decimal number
‒ Can express unsigned integers in the range 0 to
10k ‒ 1.
• For k=3, from 0 to 999.

• An k-bit binary number
‒ Can express unsigned integers in the range 0 to
2k ‒ 1.
• For k=8, from 0 to 255.
• For k=10, from 0 to 1023.

17

Programming and Data Structure

Classification of Software

• Two categories:
1. Application Software

• Used to solve a particular problem.
• Editor, financial accounting, weather forecasting,

mathematical toolbox, etc.

2. System Software
• Helps in running other programs.
• Compiler, operating system, etc.

18

Programming and Data Structure

Computer Languages

• Machine Language
‒ Expressed in binary.

• 10110100 may mean ADD, 01100101 may mean SUB,
etc.

‒ Directly understood by the computer.

‒ Not portable; varies from one machine type to
another.
• Program written for one type of machine will not run
on another type of machine.

‒ Difficult to use in writing programs.

19

Programming and Data Structure

Contd.

• Assembly Language
‒ Mnemonic form of machine language.

‒ Easier to use as compared to machine language.
• For example, use “ADD” instead of “10110100”.

‒ Not portable (like machine language).

‒ Requires a translator program called assembler.

Assembler
Assembly
language
program

Machine
language
program

20

Programming and Data Structure

Contd.

• Assembly language is also difficult to use in
writing programs.
‒ Requires many instructions to solve a problem.

• Example: Find the average of three
numbers.

MOV A,X ; A = X
ADD A,Y ; A = A + Y
ADD A,Z ; A = A + Z
DIV A,3 ; A = A / 3
MOV RES,A ; RES = A

In C,

 RES = (X + Y + Z) / 3

21

Programming and Data Structure

High-Level Language

• Machine language and assembly language are
called low-level languages.
‒ They are closer to the machine.
‒ Difficult to use.

• High-level languages are easier to use.
‒ They are closer to the programmer.
‒ Examples:

• Fortran, C, C++, Java, Python.

‒ Requires an elaborate process of translation.
• Using a software called compiler.

‒ They are portable across platforms.

22

Programming and Data Structure

Compiler Object code Linker

Library

HLL
program

Executabl
e code

gcc compiler will be
used in the lab
classes

23

Programming and Data Structure

Operating Systems

• Makes the computer easy to use.
‒ Basically the computer is very difficult to use.
‒ Understands only machine language.

• Operating systems makes the task of the
users easier.

• Categories of operating systems:
‒ Single user
‒ Multi user (Time sharing, Multitasking, Real
time)

24

Programming and Data Structure

Contd.

• Popular operating systems:
‒ Windows: single-user multitasking
‒ Unix: multi-user
‒ Linux: a free version of Unix

• The laboratory classes will be based on
Linux.

25

Programming and Data Structure

Contd.

• Question:
‒ How many users can work on the same computer?

• Computers connected in a network.

• Many users may work on a computer.
‒ Over the network.
‒ At the same time.
‒ CPU and other resources are shared among the different
programs.
• Called time sharing.

• One program executes at a time.

26

Basic Programming Concepts

27

Programming and Data Structure

Some Terminologies

• Algorithm / Flowchart / Pseudo-code
‒ A step-by-step procedure for solving a particular
problem.

‒ Should be independent of the programming
language.

• Program
‒ A translation of the algorithm/flowchart into a form
that can be processed by a computer.

‒ Typically written in a high-level language like C, C+
+, Java, etc.

28

First Look at a C Program
/* Program to compute the area of a circle */
#include <stdio.h> /* Compulsory, for library files

*/

main() /* Function heading */
{
 float radius, area; /* Declare variables */
 scanf (ʺ%fʺ, &radius); /* Read radius */
 area = 3.14159 * radius * radius;
 printf (ʺArea = %fʺ, area); /* Output to screen

*/
}

Programming and Data Structure

Input: 10
Output: Area = 314.158997

29

Programming and Data Structure

Variables and Constants

• Most important concept for problem solving
using computers.

• All temporary results are stored in terms of
variables and constants.

‒ The value of a variable can be changed.

‒ The value of a constant do not change.

• Where are they stored?
‒ In main memory.

30

Programming and Data Structure

Contd.

• How does memory look (logically)?
‒ As a list of storage locations, each having a
unique address.

‒ Variables and constants are stored in these
storage locations.

‒ Variable is like a house, and the name of a
variable is like the address of the house.

• Different people may reside in the house,
which is like the contents of a variable.

31

Programming and Data Structure

Memory map

Address 0
Address 1
Address 2
Address 3
Address 4
Address 5
Address 6

Address N-1

Every variable is
mapped to a
particular memory
address

32

Programming and Data Structure

Variables in Memory

10

20

21

105

Memory location allocated to a
variable X

X = 10

X = 20

X = X + 1

X = X * 5

Instruction executed

T
i
m
e

33

Programming and Data Structure

Variables in Memory (contd.)

20

20

18

18

Variable

X Y

X = 20

Y = 15

X = Y + 3

Y = X / 6

Instruction executed

?

15

15

3

T
i
m
e

34

Data types

• Three common data types used:
‒ Integer :: can store only whole numbers

Examples: 25, -56, 1, 0

‒ Floating-point :: can store numbers with
fractional values.
Examples: 3.14159, -12345.345, 2.65E12,
2.35E-25

‒ Character :: can store a single character
Examples: ‘A’, ‘a’, ‘*’, ‘3’, ‘ ’, ‘+’

Programming and Data Structure 35

Data Types (contd.)

• How are they stored in memory?
‒ Integer ::

• 16 bits
• 32 bits

‒ Float ::
• 32 bits
• 64 bits

‒ Char ::
• 8 bits (ASCII code)
• 16 bits (UNICODE, used in Java)

Programming and Data Structure

Actual number of bits varies
from one computer to another

36

Programming and Data Structure

Problem solving (Typical Flow)

• Step 1:
‒ Clearly specify the problem to be solved.

• Step 2:
‒ Draw flowchart or write algorithm.

• Step 3:
‒ Convert flowchart (algorithm) into program code.

• Step 4:
‒ Compile the program into object code.

• Step 5:
‒ Execute the program.

37

Programming and Data Structure

Flowchart: basic symbols

Computation

Input / Output

Decision Box

Start / Stop

38

Programming and Data Structure

Contd.

Flow of control

Connector

39

Programming and Data Structure

Example 1: Adding three numbers

READ A, B, C

S = A + B + C

OUTPUT S

STOP

START

40

Programming and Data Structure

Example 2: Larger of two numbers

START

STOP

READ X, Y

OUTPUT Y

IS
X>Y?

OUTPUT X

STOP

YES NO

41

Programming and Data Structure

Example 3: Largest of three numbers

START

READ X, Y, Z

IS
LAR > Z?

IS
X > Y?

LAR = X LAR = Y

OUTPUT LAR OUTPUT Z

STOP STOP

YES

YES

NO

NO

42

Programming and Data Structure

Example 4: Sum of first N natural numbers

START

READ N

SUM = 0
COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

43

Programming and Data Structure

Example 5: SUM = 12 + 22 + 32 + N2

START

READ N

SUM = 0
COUNT = 1

SUM = SUM + COUNT*COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

44

Programming and Data Structure

Example 6: SUM = 1.2 + 2.3 + 3.4 + to N terms

START

READ N

SUM = 0
COUNT = 1

SUM = SUM + COUNT * (COUNT+1)

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

45

Programming and Data Structure

Example 7: Computing Factorial

START

READ N

PROD = 1
COUNT = 1

PROD = PROD * COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT PROD

STOP

YESNO

46

Programming and Data Structure

Example 8: Computing ex series up to N terms

START

READ X, N

TERM = 1
SUM = 0

COUNT = 1

SUM = SUM + TERM
TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

47

Programming and Data Structure

Example 9: Computing ex series up to 4 decimal places

START

READ X

TERM = 1
SUM = 0

COUNT = 1

SUM = SUM + TERM
TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
TERM < 0.0001? OUTPUT SUM

STOP

YESNO

48

Programming and Data Structure

Example 10: Roots of a quadratic equation

ax2 + bx + c = 0

TRY YOURSELF

49

Programming and Data Structure

Example 11: Grade computation

MARKS ≥ 90 ➔ Ex

89 ≥ MARKS ≥ 80 ➔ A

79 ≥ MARKS ≥ 70 ➔ B

69 ≥ MARKS ≥ 60 ➔ C

59 ≥ MARKS ≥ 50 ➔ D

49 ≥ MARKS ≥ 35 ➔ P

34 ≥ MARKS ➔ F

50

Programming and Data Structure

Grade Computation (contd.)

START

READ MARKS

OUTPUT “Ex”

MARKS ≥ 90? MARKS ≥ 80? MARKS ≥ 70?

OUTPUT “A” OUTPUT “B”

STOPSTOPSTOP

A

YESYESYES

NONONO

51

Programming and Data Structure

MARKS ≥ 60?

STOP

OUTPUT “C”

A MARKS ≥ 50? MARKS ≥ 35?

OUTPUT “D” OUTPUT “P” OUTPUT “F”

STOP STOP STOP

YESYESYES

NONONO

52

Programming in C

53

Programming and Data Structure

Sample C program #1

#include <stdio.h>
main()
 {
 printf (ʺ\n Our first look at a C program \nʺ);
 }

54

Programming and Data Structure

Sample C program #2

/* Compute the sum of two integers */

#include <stdio.h>
main()
 {
 int a, b, c;
 a = 10;
 b = 20;
 c = a + b;
 printf (ʺ n The sum of %d and %d is %d\nʺ, a,b,c);
 }

55

Programming and Data Structure

Sample C program #3
#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */

main()
 {
 int a, b, c;
 scanf (ʺ%d %d %dʺ, &a, &b, &c);
 if ((a>b) && (a>c)) /* Composite condition check */
 printf (ʺ\n Largest is %dʺ, a);
 else
 if (b>c) /* Simple condition check */
 printf (ʺ\n Largest is %dʺ, b);
 else
 printf (ʺ\n Largest is %dʺ, c);
 }

56

Sample C program #4

Programming and Data Structure

#include <stdio.h>
#define PI 3.1415926

/* Compute the area of a circle */
main()
 {
 float radius, area;
 float myfunc (float radius);

 scanf (ʺ%fʺ, &radius);
 area = myfunc (radius);
 printf (ʺ\n Area is %f \nʺ, area);
 }

float myfunc (float r)
 {
 float a;
 a = PI * r * r;
 return (a); /* return result */
 }

57

Programming and Data Structure

Introduction to C

• C is a general-purpose, structured programming
language.
‒ Also contains additional features which allow it to be used

at a lower level.

• C can be used for applications programming as well
as for systems programming.

• There are only 32 keywords and its strength lies in
its built-in functions.

• C is highly portable, since it relegated much
computer-dependent features to its library functions.

58

Programming and Data Structure

History of C

• Originally developed in the 1970’s by Dennis
Ritchie at AT&T Bell Laboratories.

• Popularity became widespread by the mid 1980’s,
with the availability of compilers for various
platforms.

• Standardization has been carried out to make the
various C implementations compatible.
‒ American National Standards Institute (ANSI)

‒ GNU

59

Programming and Data Structure

Structure of a C program

• Every C program consists of one or more functions.
‒ One of the functions must be called main.

‒ The program will always begin by executing the main
function.

• Each function must contain:
‒ A function heading, which consists of the function name,
followed by an optional list of arguments enclosed in
parentheses.

‒ A list of argument declarations.

‒ A compound statement, which comprises the remainder of
the function.

60

Programming and Data Structure

Contd.

• Each compound statement is enclosed within a
pair of braces: ‘{‘ and ‘}’
‒ The braces may contain combinations of
elementary statements and other compound
statements.

• Comments may appear anywhere in a
program, enclosed within delimiters ‘/*’ and
‘*/’.
‒ Example:

a = b + c; /* ADD TWO NUMBERS */

61

Programming and Data Structure

Example of a Function
/* Compute the sum of two integers */
// You can also give comments like this

#include <stdio.h>
main()
 {
 int a, b, c;

 a = 10;
 b = 20;
 c = a + b;
 printf (ʺ\n The sum of %d and %d is %d\nʺ,

a,b,c);
 }

62

Programming and Data Structure

Desirable Programming Style

• Clarity
‒ The program should be clearly written.
‒ It should be easy to follow the program logic.

• Meaningful variable names
‒ Make variable/constant names meaningful to enhance

program clarity.
• ‘area’ instead of ‘a’
• ‘radius’ instead of ‘r’

• Program documentation
‒ Insert comments in the program to make it easy to

understand.
‒ Never use too many comments.

63

Programming and Data Structure

Contd.

• Program indentation
‒ Use proper indentation.
‒ Structure of the program should be immediately visible.

64

Programming and Data Structure

Indentation Example #1 :: Good Style

#include <stdio.h>
#define PI 3.1415926
/* Compute the area of a circle */

main()
 {
 float radius, area;
 float myfunc (float radius);

 scanf (ʺ%fʺ, &radius);
 area = myfunc (radius);
 printf (ʺ\n Area is %f \nʺ, area);
 }

float myfunc (float r)
 {
 float a;
 a = PI * r * r;
 return (a);
 /* return result */
 }

65

Programming and Data Structure

Indentation Example #1 :: Bad Style

#include <stdio.h>
#define PI 3.1415926
/* Compute the area of a circle */
main()
{
float radius, area;
float myfunc (float radius);
scanf (ʺ%fʺ, &radius);
area = myfunc (radius);
printf (ʺ\n Area is %f \nʺ, area);
}

float myfunc (float r)
{
float a;
a = PI * r * r;
return (a);
 /* return result */
}

66

Programming and Data Structure

Indentation Example #2 :: Good Style
#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */

main()
 {
 int a, b, c;
 scanf (ʺ%d %d %dʺ, &a, &b, &c);
 if ((a>b) && (a>c)) /* Composite condition check */
 printf (ʺ\n Largest is %dʺ, a);
 else
 if (b>c) /* Simple condition check */
 printf (ʺ\n Largest is %dʺ, b);
 else
 printf (ʺ\n Largest is %dʺ, c);
 }

67

Programming and Data Structure

Indentation Example #2 :: Bad Style
#include <stdio.h>
/* FIND THE LARGEST OF THREE NUMBERS */
main()
{
int a, b, c;
scanf (ʺ%d %d %dʺ, &a, &b, &c);
if ((a>b) && (a>c))/* Composite condition check */
printf (ʺ\n Largest is %dʺ, a);
else
if (b>c)/* Simple condition check */
printf (ʺ\n Largest is %dʺ, b);
else
printf (ʺ\n Largest is %dʺ, c);
}

68

Programming and Data Structure

The C Character Set

• The C language alphabet:
‒ Uppercase letters ‘A’ to ‘Z’
‒ Lowercase letters ‘a’ to ‘z’
‒ Digits ‘0’ to ‘9’
‒ Certain special characters:

! # % ^ & * ()

- _ + = ~ [] \

 | ; : ‘ “ { } ,

. < > / ? blank

69

Programming and Data Structure

Identifiers and Keywords

• Identifiers
‒ Names given to various program elements (variables,
constants, functions, etc.)

‒ May consist of letters, digits and the underscore (‘_’)
character, with no space between.

‒ First character must be a letter.
‒ An identifier can be arbitrary long.

• Some C compilers recognize only the first few characters of the
name (16 or 31).

‒ Case sensitive
• ‘area’, ‘AREA’ and ‘Area’ are all different.

70

Programming and Data Structure

Contd.

• Keywords
‒ Reserved words that have standard, predefined
meanings in C.

‒ Cannot be used as identifiers.
‒ OK within comments.
‒ Standard C keywords:

auto break case char const continue default do
double else enum extern float for goto if

int long register return short signed sizeof static

struct switch typedef union unsigned void volatile while

71

Programming and Data Structure

Valid and Invalid Identifiers

• Valid identifiers
X
abc
simple_interest
a123
LIST
stud_name
Empl_1
Empl_2
avg_empl_salary

• Invalid identifiers
10abc
my-name
ʺhelloʺ
simple interest
(area)
%rate
double
for

72

Programming and Data Structure

Data Types in C

int :: integer quantity
 Typically occupies 4 bytes (32 bits) in memory.

char :: single character
 Typically occupies 1 byte (8 bits) in memory.

float :: floating-point number (a number with a

 decimal point)
 Typically occupies 4 bytes (32 bits) in memory.

double :: double-precision floating-point number
 Typically occupies 8 bytes (64 bits) in memory.

73

Programming and Data Structure

Contd.

• Some of the basic data types can be augmented by
using certain data type qualifiers:

‒ short

‒ long

‒ signed

‒ unsigned

• Examples:
 short int flag;
 long int result;
 unsigned int count, age;

74

Programming and Data Structure

Some Examples of Data Types

• int
 0, 25, ‒156, 12345, ‒99820

• char
 ‘a’, ‘A’, ‘*’, ‘/’, ‘ ’

• float
 23.54, ‒0.00345, 25.0
 2.5E12, 1.234e‒5

E or e means “10 to the
power of”

75

Programming and Data Structure

Constants

Constants

Numeric
Constants

Character
Constants

stringsingle
character

floating-pointinteger

76

Programming and Data Structure

Integer Constants

• Consists of a sequence of digits, with possibly
a plus or a minus sign before it.
‒ Embedded spaces, commas and non-digit
characters are not permitted between digits.

• Maximum and minimum values (for 32-bit
representations)
 Maximum :: + 2147483647 (231 ‒ 1)

 Minimum :: ‒ 2147483648 (‒ 231)

 <For 2’s complement representation>

77

Programming and Data Structure

Floating-point Constants

• Can contain fractional parts.
• Very large or very small numbers can be

represented.
 23000000 can be represented as 2.3e7

• Two different notations:
1. Decimal notation

 25.0, 0.0034, .84, -2.234

2. Exponential (scientific) notation
 3.45e23, 0.123e-12, 123E2 e means “10 to the

power of”

78

Programming and Data Structure

Single Character Constants

• Contains a single character enclosed within a
pair of single quote marks.
‒ Examples :: ‘2’, ‘+’, ‘Z’

• Some special backslash characters
 ‘\n’ new line
 ‘\t’ horizontal tab
 ‘\’’ single quote
 ‘\”’ double quote
 ‘\\’ backslash
 ‘\0’ null

79

Programming and Data Structure

String Constants

• Sequence of characters enclosed in double
quotes.
‒ The characters may be letters, numbers, special
characters and blank spaces.

• Examples:
 “nice”, “Good Morning”, “3+6”, “3”, “C”

• Differences from character constants:
‒ ‘C’ and “C” are not equivalent.
‒ ‘C’ has an equivalent integer value while “C” does
not.

80

Programming and Data Structure

Variables

• It is a data name that can be used to store a
data value.

• Unlike constants, a variable may take
different values in memory during execution.

• Variable names follow the same naming
convention for identifiers.
 Examples :: temp, speed, name2, current,
my_salary

81

Programming and Data Structure

Example

int a, b, c;
char x;

a = 3;
b = 50;
c = a – b;
x = ‘d’;

b = 20;
a = a + 1;
x = ‘G’;

82

Programming and Data Structure

Declaration of Variables

• There are two purposes:
‒ It tells the compiler what the variable name is.
‒ It specifies what type of data the variable will

hold.

• General syntax:
 data-type variable-list;

• Examples:
 int velocity, distance;
 int a, b, c, d;
 float temp;
 char flag, option;

83

Programming and Data Structure

A First Look at Pointers

• A variable is assigned a specific memory location.
‒ For example, a variable speed is assigned memory
location 1350.

‒ Also assume that the memory location contains the
data value 100.

‒ When we use the name speed in an expression, it refers
to the value 100 stored in the memory location.

distance = speed * time;

• Thus every variable has an address in memory,
and its contents.

84

Programming and Data Structure

Contd.

• In C terminology, in an expression
 speed refers to the contents of the memory
location.

 &speed refers to the address of the memory
location.

• Examples:
 printf (ʺ%f %f %fʺ, speed, time, distance);
 scanf (ʺ%f %fʺ, &speed, &time);

85

Programming and Data Structure

An Example

#include <stdio.h>
main()
 {
 float speed, time, distance;

 scanf (ʺ%f %fʺ, &speed, &time);
 distance = speed * time;
 printf (ʺ\n The distance traversed is: %f\nʺ,
 distance);
 }

86

Programming and Data Structure

Assignment Statement

• Used to assign values to variables, using the
assignment operator (=).

• General syntax:
 variable_name = expression;

• Examples:
 velocity = 20;
 b = 15; temp = 12.5;
 A = A + 10;
 v = u + f * t;
 s = u * t + 0.5 * f * t * t;

87

Programming and Data Structure

Contd.

• A value can also be assigned to a variable at
the time the variable is declared.
 int speed = 30;
 char flag = ‘y’;

• Several variables can be assigned the same
value using multiple assignment operators.
 a = b = c = 5;
 flag1 = flag2 = ‘y’;
 speed = flow = 0.0;

88

Programming and Data Structure

Operators in Expressions

Operators

Arithmetic
Operators

Relational
Operators

Logical
Operators

89

Programming and Data Structure

Arithmetic Operators

• Addition :: +

• Subtraction :: ‒

• Division :: /
• Multiplication :: *

• Modulus :: %

90

Programming and Data Structure

Examples

distance = rate * time ;
netIncome = income - tax ;
speed = distance / time ;
area = PI * radius * radius;
y = a * x * x + b*x + c;
quotient = dividend / divisor;
remain = dividend % divisor;

91

Programming and Data Structure

Contd.

• Suppose x and y are two integer variables,
whose values are 13 and 5 respectively.

x + y 18

x – y 8

x * y 65

x / y 2

x % y 3

92

Programming and Data Structure

Operator Precedence

• In decreasing order of priority
1. Parentheses :: ()
2. Unary minus :: ‒5
3. Multiplication, Division, and Modulus
4. Addition and Subtraction

• For operators of the same priority, evaluation is
from left to right as they appear.

• Parenthesis may be used to change the precedence
of operator evaluation.

93

Programming and Data Structure

Examples: Arithmetic expressions

a + b * c ‒ d / e ➔ a + (b * c) ‒ (d / e)

a * ‒ b + d % e ‒ f ➔ a * (‒ b) + (d % e) ‒ f

a ‒ b + c + d ➔ (((a ‒ b) + c) + d)

x * y * z ➔ ((x * y) * z)

a + b + c * d * e ➔ (a + b) + ((c * d) * e)

94

Programming and Data Structure

Integer Arithmetic

• When the operands in an arithmetic expression are
integers, the expression is called integer expression,
and the operation is called integer arithmetic.

• Integer arithmetic always yields integer values.

• Examples:
(12 + 3) / 6 gives the value 2
(2 / 3) * 3 gives the value 0
(12 * 3) / 7 + 3 * 2 gives the value 11

95

Programming and Data Structure

Real Arithmetic

• Arithmetic operations involving only real or
floating-point operands.

• Since floating-point values are rounded to the
number of significant digits permissible, the final
value is an approximation of the final result.
 1.0 / 3.0 * 3.0 will have the value 0.99999 and
not 1.0

• The modulus operator cannot be used with real
operands.

96

Programming and Data Structure

Mixed-mode Arithmetic

• When one of the operands is integer and the other
is real, the expression is called a mixed-mode
arithmetic expression.

• If either operand is of the real type, then only real
arithmetic is performed, and the result is a real
number.
 25 / 10 gives the value 2
 25 / 10.0 gives the value 2.5

• Some more issues will be considered later.

97

Programming and Data Structure

Type Casting

• Temporarily convert the type of a variable before
being used in an expression.
‒ Expressed by specifying the desired type in
parenthesis before the variable/expression.

• Examples:
int a = 10, b = 4, c; float x, y;
x = (float) a / b; /* x will be 2.5 */
y = (float) (a / b); /* y will be 2.0 */
c = (int) x * 4; /* c will be 8 */
a = (int) (x * 4); /* a will be 10 */

98

Programming and Data Structure

Relational Operators

• Used to compare two quantities.

• The result of comparison is “true” or “false”.
‒ The value 0 is considered as “false”, and any non-zero

value as “true”.

< is less than
> is greater than
<= is less than or equal to
>= is greater than or equal to
== is equal to
!= is not equal to

99

Programming and Data Structure

Examples

10 > 20 is false
25 < 35.5 is true
12 > (7 + 5) is false

• When arithmetic expressions are used on either side
of a relational operator, the arithmetic expressions
will be evaluated first and then the results
compared.

 a + b > c – d is the same as (a+b) > (c+d)

100

Programming and Data Structure

Examples

• Sample code segment in C:

if (x > y)
 printf (ʺ%d is larger\nʺ, x);
else
 printf (ʺ%d is larger\nʺ, y);

if (1) /* will be always true */
 …………

101

Programming and Data Structure

Logical Operators

• There are two logical operators in C (also
called logical connectives).

 && ➔ Logical AND
 | | ➔ Logical OR

• What they do?
‒ They act upon operands that are themselves
logical expressions.

‒ The individual logical expressions get combined
into more complex conditions that are true or false.

102

Programming and Data Structure

‒ Logical AND
• Result is true if both the operands are true.

‒ Logical OR
• Result is true if at least one of the operands are true.

X Y X && Y X | | Y

FALSE FALSE FALSE FALSE

FALSE TRUE FALSE TRUE

TRUE FALSE FALSE TRUE

TRUE TRUE TRUE TRUE

103

• Examples:
if ((i > 2) && (i < 10))
 printf (ʺ\n i lies between 3 and 9ʺ);

if ((flag == ’A’) || (flag == ’a’)
 printf (ʺ\n Either lower or uppercase Aʺ);

Programming and Data Structure 104

Programming and Data Structure

Input / Output

• printf
‒ Performs output to the standard output device
(typically defined to be the screen).

‒ It requires a format string in which we can specify:
• The text to be printed out.
• Specifications on how to print the values.
 printf (ʺThe number is %d.\nʺ, num) ;
• The format specification %d causes the value listed after
the format string to be embedded in the output as a
decimal number in place of %d.

• Output will appear as: The number is 125.

105

Programming and Data Structure

• scanf
‒ Performs input from the standard input device, which is
the keyboard by default.

‒ It requires a format string and a list of variables into
which the value received from the input device will be
stored.

‒ It is required to put an ampersand (&) before the names
of the variables.
 scanf ("%d", &size) ;
 scanf ("%c", &nextchar) ;
 scanf ("%f", &length) ;
 scanf (“%d %d”, &a, &b);

106

