Assignment 2: Algorithmic Game Theory

Palash Dey Indian Institute of Technology, Kharagpur

September 18, 2020

- 1. Let $\Gamma = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a game in strategic form. Let $\sigma_i \in \Delta(S_i)$ be mixed strategies of the players and $\sigma = \prod_{i \in N} \sigma_i$. Prove that σ is a CE if and only if $(\sigma_i)_{i \in N}$ is an MSNE.
- 2. Let $\Gamma = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a game in strategic form. Prove that a distribution $\sigma \in \Delta(\prod_{i \in N} S_i)$ is a CE if and only if the following holds for every $i \in N$ and every $\delta_i : S_i \longrightarrow S_i$.

$$\mathbb{E}_{s \sim \sigma}[u_{i}(s)] \geqslant \mathbb{E}_{s \sim \sigma}[u_{i}(\delta_{i}(s_{i}), s_{-i})]$$

- 3. Give an example of a game which has a PSNE but the best response dynamics can run forever.
- 4. Let α be a correlated equilibrium of a matrix game. Prove that $u_1(\alpha)$ (the utility of the row player) is equal to the value of the game in mixed strategies.
- 5. Compute all correlated equilibrium of the following coordination game.
 - \triangleright The set of players (N) : {1, 2}
 - $\,\vartriangleright\,$ The set of strategies: $S_{\mathfrak{i}}=\{A,B\}$ for every $\mathfrak{i}\in[2]$

$$\triangleright Payoff matrix: Player 1 Player 1 Player 1 Player 1 Player 2 A BA (2,2) (0,6)B (6,0) (1,1)$$

- 6. Compute all correlated equilibrium of the following coordination game.
 - \triangleright The set of players (N) : {1, 2}
 - $\,\vartriangleright\,$ The set of strategies: $S_{\mathfrak{i}}=\{A,B\}$ for every $\mathfrak{i}\in[2]$

			Player 2		
⊳ Payoff matrix:			A	В	
	Player 1	A	(2,2)	(0,0)	
		В	(0,0)	(1,1)	

- 7. Prove that as the degree p of the cost function in the bottom link of Pigou's network goes to ∞ , the price of anarchy of Pigou's network tends to ∞ as $\frac{p}{\ln p}$.
- 8. Prove that in a selfish load balancing game with 3 tasks and 2 identical machines, the PoA with respect to PSNE is 1.