Assignment 1: Algorithmic Game Theory

Palash Dey Indian Institute of Technology, Kharagpur

September 5, 2020

- 1. In a normal form game $\Gamma = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ if a pure strategy $s_i \in S_i$ for some player i is strongly dominated by some mixed strategy $\sigma_i \in \Delta(S_i)$, then in every MSNE of the game, player i chooses the strategy s_i with probability 0.
- 2. Give an example of a normal form game which does not have any MSNE.
- 3. Compute an MSNE for the matching pennies and the rock-paper-scissor games. Prove that these games has unique MSNEs.
- 4. In a normal form game $\Gamma = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$, a strategy $s_i \in S_i$ for player i is called *strongly dominated* if there exists a mixed strategy $\sigma_i \in \Delta(S_i)$ for the player i which strongly dominates s_i . That is,

$$u_{i}(s_{i}, s_{-i}) < u_{i}(\sigma_{i}, s_{-i}) \forall s_{-i} \in S_{-i}$$

Prove that a strongly dominated strategy cannot have a non-zero probability in any MSNE of the game. We can use this result repeatedly to reduce the game. This strategy is called *iterative elimination of strongly dominated strategies*. Using iterative elimination of strongly dominated strategies, find all equilibrium of Game 1 (Source: [Mye97]).

		Player 2				
		A	В	С		
Player 1	A	(2, 3)	(3,0)	(0, 1)		
	В	(0,0)	(1,6)	(4, 2)		
Game 1						

		Player 2			
		A	В	С	
Player 1	A	(1, 1)	(1, 1)	(0,0)	
	В	(0,0)	(1, 2)	(1, 2)	
		Game 2			

5. In a normal form game $\Gamma = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$, a strategy $s_i \in S_i$ for player i is called *weakly dominated* if there exists a mixed strategy $\sigma_i \in \Delta(S_i \setminus \{s_i\})$ for the player i which always less or equal utility to player i irrespective of what others play and there exists a strategy profile of other players where s_i gives strictly less utility to player i. That is,

$$u_i(s_i, s_{-i}) \leqslant u_i(\sigma_i, s_{-i}) \forall s_{-i} \in S_{-i}$$

Prove that, for every weakly dominated strategy s_i for player i, there exists an MSNE where player i never plays s_i . We can use this result repeatedly to reduce the game if our goal is to find one MSNE (since there can be an MSNE where player i plays a weakly dominated strategy). This strategy is called *iterative elimination of weakly dominated strategies*. Using iterative elimination of strongly dominated strategies, find all equilibrium of Game 2 (Source: [Osb04]).

6. *Guessing game:* There are 56 students in the Algorithmic Game Theory class in IIT KGP in 2019. They play the following game. They guess any natural number in the interval [0, 100]. The student whose

guess is closest to the 2/3 of the average of all the guesses wins the game and receives a cash prize of 1000 rupees; in case of ties, the prize money gets shared equally. Formulate this game in normal form. Find an MSNE of this game. Prove that the MSNE found is unique.

- 7. Compute all MSNEs of the following game (Source: [Nar14]).
 - \triangleright The set of players (N): $\{1, 2\}$
 - ightharpoonup The set of strategies: $S_i = \{A, B\}$ for every $i \in [2]$
 - Player 2

 Player 2

 A B

 Player 1

 Player 1 A (20,0) (0,10) B (0,90) (20,0)
- 8. Compute all MSNEs of the following coordination game.
 - \triangleright The set of players (N): $\{1, 2\}$
 - ightharpoonup The set of strategies: $S_{\mathfrak{i}}=\{A,B\}$ for every $\mathfrak{i}\in[2]$

			Player 2		
⊳ Payoff matrix:			A	В	
rayon manix.	Player 1	A	(10, 10)	(0,0)	
		В	(0,0)	(1, 1)	

- 9. Compute all MSNEs of the tragedy of commons game.
 - \triangleright The set of players (N): $\{1, 2, ..., n\}$ (we denote this set by [n])
 - $\,\rhd\,$ The set of strategies: $S_{\mathfrak{i}}=\{0,1\}$ for every $\mathfrak{i}\in[\mathfrak{n}]$
 - □ Utility:

$$u_i(s_1,\ldots,s_i,\ldots,s_n) = s_i - \left[\frac{5(s_1+\cdots+s_n)}{n}\right]$$

- 10. Prove that bidding valuations does not always form a PSNE in the first price auction. That is, give an example of a first price auction scenario where bidding valuation is not a PSNE.
- 11. Compute an MSNE, if any, for the following game (Source: [Nar14]).
 - \triangleright The set of players (N): $\{1, 2\}$
 - \triangleright The set of strategies: $S_1 = [0, 1], S_2 = [3, 4]$
 - \triangleright Utility: $u_1(x, y) = -u_2(x, y) = |x y|, \forall (x, y) \in [0, 1] \times [3, 4]$
- 12. Consider a road networks shown in Figure 1. The numbers on the edges indicate the time (in minutes say) one requires to traverse the edges. The variable x denote the number of commuters using that edge. Suppose there are 100 people who want to reach the vertex B from vertex A. Write the strategic form games corresponding to the networks in Figure 1 and find the PSNEs for both the games.
- 13. Let A be a $n \times n$ matrix of a matrix game. Prove that, if A is anti-symmetric, then the value of the row player in mixed strategies is 0.
- 14. Let \mathcal{A} be a m \times n matrix of a matrix game. Assume that (i,j) and (h,k) are two PSNEs of the matrix game. Then prove that (i,k) and (h,j) are also two PSNEs of the matrix game.
- 15. Let \mathcal{A} be a $n \times n$ matrix of a matrix game. Assume \mathcal{A} is a latin square; that is, each row and each column of \mathcal{A} is a permutation of $\{1, 2, ..., n\}$. Compute a PSNE of the corresponding matrix game if it exists.

2

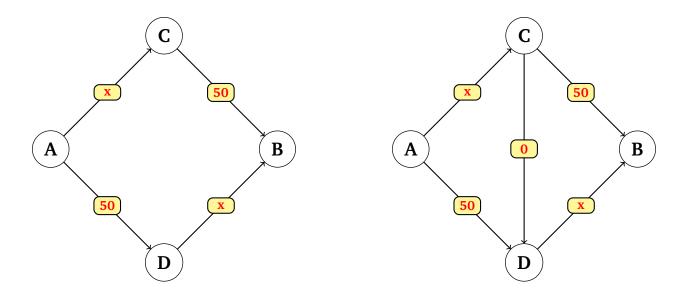


Figure 1: Braess paradox.

- 16. Suppose in a matrix game, the players have 3 strategies each. Which numbers among $\{0, 1, 2, ..., 9\}$ cannot be the total number PSNEs in the matrix game.
- 17. Let \mathcal{A} and \mathcal{B} be two finite sets, and $f: \mathcal{A} \times \mathcal{B} \longrightarrow \mathbb{R}$ be any arbitrary function. Then prove that,

$$\max_{\alpha \in \mathcal{A}} \min_b \in \mathfrak{B} f(\alpha,b) \leqslant \min_{b \in \mathfrak{B}} \max_{\alpha \in \mathcal{A}} f(\alpha,b)$$

- 18. Given an $\mathfrak{m} \times \mathfrak{n}$ matrix \mathcal{A} , an entry $\mathfrak{a}_{i,j}$ is called a *saddle point* of \mathcal{A} if $\mathfrak{a}_{i,j}$ is simultaneously a maximum for the j-th column and minimum for the i-th row. Prove that $\mathfrak{a}_{i,j}$ is a saddle point of \mathcal{A} if and only if (i,j) is a PSNE for the corresponding matrix game.
- 19. Let \underline{v} and \overline{v} be respectively the maxmin and minmax value of a matrix \mathcal{A} in pure strategies. Prove that the corresponding matrix game has a PSNE if and only if \mathcal{A} has a saddle point.
- 20. Let \underline{v} and \overline{v} be respectively the maxmin and minmax value of a matrix \mathcal{A} in pure strategies. Prove that $\underline{v} = \overline{v}$ if and only if \mathcal{A} has a saddle point.
- 21. Suppose player i has a pure strategy s_i that us chosen with positive probability in every maxmin strategy for that player. Prove that s_i is not weakly dominated by any other pure or mixed strategy.

References

- [Mye97] Roger B. Myerson. Game theory Analysis of Conflict. Harvard University Press, 1997.
- [Nar14] Y. Narahari. *Game Theory and Mechanism Design*. World Scientific Publishing Company Pte. Limited, 2014.
- [Osb04] Martin J. Osborne. An introduction to game theory. Oxford Univ. Press, New York, NY [u.a.], 2004.