INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Randomized Algorithm Design: First Class Test 2018-19

Date of Examination: 23 January 2019 Session (FN/AN): Class Test I Duration: 1 hours Full Marks: 20 Subject No: CS60029 Subject: Randomized Algorithm Design Department/Center/School: COMPUTER SCIENCE AND ENGINEERING Specific charts, graph paper, log book etc., required: NO Special instruction (if any): NA

Answer all question.

1. Let \mathfrak{X} be a discrete random variable with finite expectation. Suppose support of \mathfrak{X} be \mathbb{N} . Then prove that $\mathbb{E}[\mathfrak{X}] = \sum_{i=1}^{n} \Pr[\mathfrak{X} \ge i]$.

[5 Marks]

2. Let \mathfrak{X} and \mathfrak{Y} be two random variables defined on the same underlying probability space $(\Omega, \mathfrak{F} = 2^{\Omega}, \mathfrak{P})$ where Ω is a finite set. Then prove that $\mathbb{E} [\mathbb{E} [\mathfrak{X} | \mathfrak{Y}]] = \mathbb{E} [\mathfrak{X}]$.

[5 Marks]

3. Fix any input sequence of n integers to the quick sort algorithm. Let \mathcal{X} be the random variable denoting the number of comparisons the the quick sort algorithm makes on the input sequence. Then prove that $var(\mathcal{X}) = O(n^2)$.

[10 Marks]