Assignment 4: Randomized Algorithm Design

Palash Dey
Indian Institute of Technology, Kharagpur

April 14, 2019

1. Let C_{n} be a cycle on a set \mathcal{V} of n vertices and \mathcal{T} be a tree which is an embedding of C_{n}. Then prove that there exists an edge $\{u, v\} \in \mathcal{E}\left[C_{n}\right]$ such that the distance between u and v in \mathcal{T} is $n-1$.
2. If $Z_{i}, i \in \mathbb{N}$ is a martingale with respect to $X_{i}, i \in \mathbb{N}$, then prove that $Z_{i}, i \in \mathbb{N}$ is a martingale with respect to itself also.
3. Let $X_{0}=0$ and X_{j+1} is distributed uniformly over $\left[X_{j}, 1\right]$. Show that, for $k \geqslant 0$, the sequence

$$
Y_{k}=2^{k}\left(1-X_{k}\right)
$$

is a martingale.
4. Alice and Bob play each other in a checkers tournament, where the first player to win four games wins the match. The players are evenly matched, so the probability that each player wins each game is $\frac{1}{2}$, independent of all other games. The number of minutes for each game is uniformly distributed over the integers in the range $[30,60]$, again independent of other games. What is the expected time they spend playing the match?
5. Consider an urn that initially contains black balls and w white balls. At every iteration, we draw a random ball is chosen and the chosen ball is replaced by $c>1$ balls of the same color. Let X_{i} denote the fraction of black balls after i-th draw. Prove that X_{0}, X_{1}, \ldots is a martingale.

