Assignment 3: Randomized Algorithm Design

Palash Dey
Indian Institute of Technology, Kharagpur

March 25, 2019

1. A set family $\mathcal{F} \in 2^{[n]}$ is called intersecting if, for every $\mathcal{A}, \mathcal{B} \in \mathcal{F}$, we have $\mathcal{A} \cap \mathcal{B} \neq \emptyset$. Let \mathcal{F} be an intersecting family of subsets of cardinality k of $[n]$. Then prove that $|\mathcal{F}| \leqslant\binom{ n-1}{k-1}$. This is known as the Erdős-Ko-Rado Theorem or the sunflower theorem.
2. Prove that any graph has a bipartite sub-graph containing at least half the total number of edges.
3. The chromatic number $\chi(\mathrm{G})$ of a graph G is the minimum number of colors needed to color its vertices. The girth $g(G)$ is the lenght of the shortest cycle in the graph G (if there is no cycle, then the girth is $-1)$. Prove that, for any $k, \ell>0$ there exists a graph with $\chi(G)>k$ as well as $g(G)>\ell$.
4. A family \mathcal{F} of subsets of $\{1,2, \ldots, n\}$ is called an anti-chain if, for no pair of sets $A, B \in \mathcal{F}$, we have $A \subseteq B$.
(a) Give an example of \mathcal{F} with $\mathcal{F}=\binom{n}{\left\lfloor{ }^{n} / 2\right\rfloor}$.
(b) Let f_{k} denote the number of sets in \mathcal{F} of cardinality k. Then prove

$$
\sum_{k=0}^{n} \frac{f_{k}}{\binom{n}{k}} \leqslant 1
$$

(c) Prove that $|\mathcal{F}| \leqslant\binom{ n}{\lfloor n / 2\rfloor}$ for any anti-chain \mathcal{F}.
5. An hypergraph is a tuple $(\mathcal{V}, \mathcal{E})$ where \mathcal{V} is the set of vertices and \mathcal{E} is the set of hyperedges. An hyperedge $e \subseteq \mathcal{V}$ is some subset of vertices. A coloring of a hypergraph gives colors to its vertices such that no hyper edge see repetition of any color. Prove that, in a hypergraph \mathcal{H}, if every edge has at least k vertices, every edge intersects with at most d other edges, and $e(d+1) \leqslant 2^{k-1}$, then \mathcal{H} is 2 colorable. (Hint: use Lovász local lemma)
6. Let $\mathcal{D}=(\mathcal{V}, \mathcal{A})$ is a directed graph with minimum outdegree δ and maximum indegree Δ. Prove (using Lovász local lemma) that, if $k \leqslant \frac{\delta}{1+\ln (1+\delta \Delta)}$, then \mathcal{D} contains a directed cycle of length divisible by k.
7. The randomized algorithm of assigning every vertex to one of the two sets A and B with equal probability provides a $1 / 2$ factor approximation for the maximum cut problem for weighted undirected graphs. Use method of conditional expectation to de-randomize this algorithm.
8. Give an example of a 2 universal hash family which is not 3 universal.
9. In the standard balls and bins setting, we have seen that if n balls are thrown into n bins uniformly at random, then the maximum load is at most $2 \ln n / \ln \ln n$ with probability at least $1-1 / n$. Suppose, we use a hash function picked u.a.r from a k-universal hash family to throw balls into bins. Show that, for $k=2$, the maximum load is at most $\sqrt{2 n}$ with probability at least $1 / 2$. Find the smallest value of k such that the maximum load is at most $2 \ln n / \ln \ln n$ with probability at least $1 / 2$.

