Date of Examination:
Session (FN/AN):
Duration: 2 hours
Full Marks: 60
Subject No: CS60007
Subject: ALGORITHM DESIGN AND ANALYSIS
Department/Center/School: COMPUTER SCIENCE AND ENGINEERING
Specific charts, graph paper, log book etc., required: NO
Special instruction (if any): NA

Answer question 5 and any three of the first four questions.

1. [A-perfect r-matching] Let $G=(A \cup B, E)$ be a bipartite graph. An r-matching of G is a subset $M \subseteq E$ of edges such that
(a) For each vertex u in $A,|\{v \in B:(u, v) \in M\}| \in\{0$, r\}, i.e., each vertex in A is matched to either no vertex in B, or exactly r vertices in B,
(b) For each vertex v in $B,|\{u \in A:(u, v) \in M\}| \in\{0,1\}$, i.e., each vertex in B is matched to at most one vertex in A.

Note that the usual notion of matching corresponds to $r=1$. An r-matching M is said to be A-perfect if all the vertices in A are matched in M, i.e., for each vertex u in $A, k v \in B:(u, v) \in$ $M\} \mid=r$. Recall that for a subset $A^{\prime} \subseteq A$, the neighborhood $\mathcal{N}\left(A^{\prime}\right)$ of A^{\prime} is defined to be the set of neighbors of vertices in A^{\prime}, i.e., $\mathcal{N}\left(A^{\prime}\right)=\{v \in B$: there exists $u \in A$ such that $(u, v) \in E\}$. Prove that G has an A-perfect r-matching if and only if for each subset $A^{\prime} \subseteq A,\left|\mathcal{N}\left(A^{\prime}\right)\right| \geqslant r\left|A^{\prime}\right|$. Note that for $r=1$, this is Hall's theorem.
[15 Marks]
2. Let G be an undirected weighted graph. Each edge f in G has a real weight $w(f)$ which could possibly be negative. Let T_{1} and T_{2} be two different minimum spanning trees of G. Let $e=(u, v)$ be an edge that is in T_{1} but not in T_{2}. Let \mathcal{P} be the unique path between u and v in T_{2}. Show that \mathcal{P} has an edge e^{\prime} such that $w\left(e^{\prime}\right)=w(e)$.
[15 Marks]
3. Given two strings x and y of lengths m and n respectively over an alphabet Σ, design an algorithm with worst case running time $O(m n)$ to find the edit distance between x and y. The edit distance between any two strings x and y is the minimum number of operations one needs to perform to transform x into y. The following operations are allowed.
(i) Insertion: any symbol from Σ can be inserted at any position in a string.
(ii) Deletion: any symbol from a string can be deleted.
(iii) Substitution: any symbol from a string can be replaced with another symbol.
4. A vertex cover of an undirected graph $G=(V, E)$ is a set of vertices $U \subseteq V$ such that each edge has one of its endpoints in U, i.e., for each edge $(u, v) \in E$, we have $u \in U$ or $v \in U$ (or both). Prove using linear programming duality that if G is bipartite then the size of its maximum matching is equal to the size of its minimum vertex cover.
[15 Marks]
5. [Hamiltonian path] Let G be an undirected graph with n vertices. A Hamiltonian path of G is a path which visits each vertex of G exactly once. Design a $O\left(\operatorname{poly}(n) \cdot 2^{n}\right)$ time algorithm to determine if G has a hamiltonian path, and to find a Hamiltonian path in case G has one, where $\operatorname{poly}(n)$ is any polynomial function of n.

