INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Mid-Autumn Semester 2018-19

Date of Examination: Session (FN/AN): Duration: 2 hours Full Marks: 60 Subject No: CS60007 Subject: ALGORITHM DESIGN AND ANALYSIS Department/Center/School: COMPUTER SCIENCE AND ENGINEERING Specific charts, graph paper, log book etc., required: NO Special instruction (if any): NA

Answer question 5 and any three of the first four questions.

- 1. [A-perfect r-matching] Let $G = (A \cup B, E)$ be a bipartite graph. An r-matching of G is a subset $M \subseteq E$ of edges such that
 - (a) For each vertex u in A, $|\{v \in B : (u,v) \in M\}| \in \{0,r\}$, i.e., each vertex in A is matched to either no vertex in B, or exactly r vertices in B,
 - (b) For each vertex ν in B, $|\{u \in A : (u, \nu) \in M\}| \in \{0, 1\}$, i.e., each vertex in B is matched to at most one vertex in A.

Note that the usual notion of matching corresponds to r = 1. An r-matching M is said to be A-perfect if all the vertices in A are matched in M, i.e., for each vertex u in A, $|\{v \in B : (u, v) \in M\}| = r$. Recall that for a subset $A' \subseteq A$, the neighborhood $\mathcal{N}(A')$ of A' is defined to be the set of neighbors of vertices in A', i.e., $\mathcal{N}(A') = \{v \in B : \text{ there exists } u \in A \text{ such that } (u, v) \in E\}$. Prove that G has an A-perfect r-matching *if and only if* for each subset $A' \subseteq A$, $|\mathcal{N}(A')| \ge r|A'|$. Note that for r = 1, this is Hall's theorem.

[15 Marks]

Let G be an undirected weighted graph. Each edge f in G has a real weight w(f) which could possibly be negative. Let T₁ and T₂ be two different minimum spanning trees of G. Let e = (u, v) be an edge that is in T₁ but not in T₂. Let P be the unique path between u and v in T₂. Show that P has an edge e' such that w(e') = w(e).

[15 Marks]

- 3. Given two strings x and y of lengths m and n respectively over an alphabet Σ , design an algorithm with worst case running time O(mn) to find the edit distance between x and y. The edit distance between any two strings x and y is the minimum number of operations one needs to perform to transform x into y. The following operations are allowed.
 - (i) **Insertion:** any symbol from Σ can be inserted at any position in a string.
 - (ii) **Deletion:** any symbol from a string can be deleted.
 - (iii) **Substitution:** any symbol from a string can be replaced with another symbol.

4. A vertex cover of an undirected graph G = (V, E) is a set of vertices $U \subseteq V$ such that each edge has one of its endpoints in U, i.e., for each edge $(u, v) \in E$, we have $u \in U$ or $v \in U$ (or both). Prove using linear programming duality that if G is bipartite then the size of its maximum matching is equal to the size of its minimum vertex cover.

[15 Marks]

5. [Hamiltonian path] Let G be an undirected graph with n vertices. A Hamiltonian path of G is a path which visits each vertex of G exactly once. Design a O(poly(n) · 2ⁿ) time algorithm to determine if G has a hamiltonian path, and to find a Hamiltonian path in case G has one, where poly(n) is any polynomial function of n.

[15 Marks]