
Reduction from SAT to 3SAT

Swagato Sanyal

We describe a polynomial time reduction from SAT to 3SAT. The reduction takes an arbi-
trary SAT instance φ as input, and transforms it to a 3SAT instance φ ′, such that satisfiabil-
ity is preserved, i.e., φ ′ is satisfiable if and only if φ is satisfiable. Recall that a SAT instance
is an AND of some clauses, and each clause is OR of some literals. A 3SAT instance is a
special type of SAT instance in which each clause has exactly 3 literals.

Example of a SAT instance
x1 ∧ (x1 ∨ x2)∧ (x2 ∨ x3 ∨ x5)∧ (x1 ∨ x4 ∨ x6 ∨ x7)∧ (x1 ∨ x2 ∨ x3 ∨ x5 ∨ x7).

Example of a 3SAT instance
(x1 ∨ x2 ∨ x4)∧ (x2 ∨ x3 ∨ x5)∧ (x1 ∨ x4 ∨ x6).

The reduction replaces each clause in φ with a set of clauses, each having exactly
three literals. Assume that φ involves n variables x1, . . . , xn. The new formula φ ′ will
have some new variables in addition to the x ′is.
We now describe how we replace each clause in φ. Let C is an arbitrary clause in φ.

case 1: C has one literal : Let C consist of a single literal `. ` is either xi or xi for some
i. Let z1 and z2 be two new variables. We replace C by the following four clauses:
(`∨ z1 ∨ z2), (`∨ z1 ∨ z2), (`∨ z1 ∨ z2), (`∨ z1 ∨ z2).
Please verify for yourself that the logical AND of the above four clauses is equal to `.
Thus, the new formula obtained by replacing C by these four clauses computes the
same Boolean function as the original formula. Hence, the new formula is satisfiable
if and only if the old formula is satisfiable.

case 2: C has two literals : Let C = `1 ∨ `2. Each of `1 and `2 is either a variable xi or
a negated variable xi. Let z1 be a new variable. Replace C by the following two
clauses: (`1 ∨ `2 ∨ z1), (`1 ∨ `2 ∨ z1).
Please verify for yourself that the logical AND of the above two clauses is equal to
C = `1 ∨ `2. Thus, the new formula obtained by replacing C by these two clauses
computes the same Boolean function as the original formula. Hence, the new formula
is satisfiable if and only if the old formula is satisfiable.

case 3: C has three literals : In this case leave C unchanged.

1



case 4: C has more than three literals : Let k > 3 and C = `1 ∨ `2 ∨ . . . ∨ `k, where
each li either a variable xi or a negated variable xi. Let z1, z2, . . . , zk−3 be k− 3 new
variables. We replace C by the following k− 3 clauses:
(`1 ∨ `2 ∨ z1), (`3 ∨ z1 ∨ z2), (`4 ∨ z2 ∨ z3), . . . , (`k−2 ∨ zk−4 ∨ zk−3), (`k−1 ∨ `k∨ zk−3).
Unlike cases 1 and 2, the logical AND of the above k − 2 clauses is not the same as
C. However, the following two statements can be verified to be true. Let Ψ denote
the AND of the above k− 3 clauses.

1. Given an assignment to x1, . . . , xn in which C is TRUE, there is a way of setting
the new variables z1, . . . , zk−3 such that Ψ is TRUE.

2. Given an assignment to x1, . . . , xn in which C is FALSE, there is no way of setting
z1, . . . , zk−3 such that Ψ is TRUE.

In the class, we showed that the statements 1 and 2 above are true for the special
cases of k = 4 and 5.

Exercise: Prove that statements 1 and 2 are true for every k > 3.

From statements 1 and 2 it follows that performing the above replacement
preserves the satisfiability of the original formula, i.e., the formula after the
replacement is satisfiable if and only if the formula before the replacement is
satisfiable.

The reduction is simply applying the appropriate replacement to each clause in φ. We use
a fresh set of new variables zi’s for each clause. The procedure can be easily verified to be
polynomial time.

Exercise: Prove the correctness of the reduction, i.e., that it preserves satisfiability.

2


