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1. INTRODUCTION

In the cross-language information retrieval (CLIR) road map, discussed by Gey
et al. [2002] at SIGIR 2002, our attention was drawn towards the challenge of
retrieval from languages with poor resources. It was mentioned that the lan-
guages of the Indian subcontinent have received very little attention in terms
of language-specific resource building, although Indian languages are widely
spoken in South Asian countries and the population in this part of the world is
considerably large. Of the Indic languages, Bengali covers the largest share of
Eastern India and is also the state language of Bangladesh. With the prolifera-
tion of the Internet in India and Bangladesh over the last decade, the presence
of the Bengali community on the World Wide Web has become substantial and
significant online resources, such as newspapers, webzines, etc., have been cre-
ated. Thus there arises a need for information retrieval from Bengali language
documents.

The IR task is generally divided into two major components: indexing and
retrieval. While the standard indexing and retrieval approaches that have been
developed and studied in the context of English language IR may be easily
adopted for Bengali, certain language-specific components need investigation.
The indexing process typically represents documents as a collection of keywords
and their corresponding weights and usually consists of the following steps:
(a) tokenization; (b) stopword removal; (c) stemming; (d) phrase recognition; and
(e) term weighting. Of these, stopword detection and stemming are language-
dependent modules.

The words in any natural language text are inflected according to some lin-
guistic rules of that language. Inflection may occur by adding a suffix/affix to
the terms, or in some cases the entire term may be changed. Stemming aims
to identify morphological classes that share common roots. Most of the existing
stemmers use an extensive set of linguistic rules for this purpose. Rule-based
stemmers for most resource-poor languages are either unavailable or lack com-
prehensive coverage. In this article, we look at the problem of stemming for
such resource-poor languages (in particular, for Bengali). Purely unsupervised
statistical clustering techniques which do not assume any language-specific
information are proposed for this purpose.

Bengali is a highly inflectional language where 1 root may have more than
20 morphological variants. In most cases, variants are generated by adding
suffixes to the root word. There also exists a large set of compound words where
two roots can join together to form a compound word, and that compound may
also have some morphological variants. For example, the word dhan means
wealth and haran means looting or robbing. These two roots combine to form
dhanaharan, which means robbing of wealth. Now dhanaharan can produce
morphological variants like dhanaharankari and dhanaharankarider, where
kari and der are standard suffixes.

It may be possible to formulate a set of stemming rules for Bengali that
would convert a given word to its stem. However, in view of the nature of the
language, this is likely to be a difficult and time-consuming process. Further,
since a similar task may be needed for other Indic languages, our goal is to
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eliminate the use of linguistic information, and use a purely corpus-based ap-
proach instead. We therefore propose a stemming scheme where no linguistic
input is considered. We believe this scheme can be adopted for other Indian
languages like Hindi, Gujarati, etc., as well as English and French, all of which
are also primarily suffixing in nature.

We start with a lexicon extracted from a Bengali news corpus of 50,000 doc-
uments. The lexicon contains more than 300,000 terms. A set of string distance
measures is defined, and complete linkage clustering is used to discover equiv-
alence classes from the lexicon. Some infrequent cases arise where clusters
correspond to multiple roots and their morphological variants. To choose the
most representative canonical form from these multiroot clusters, we use some
postprocessing for each cluster. In order to evaluate the effectiveness of the pro-
posed stemming algorithm, we tested its performance on English and French
using standard datasets employed at TREC and CLEF. The performance of the
proposed stemmer is comparable to that of traditional rule-based stemmers,
namely Porter’s [1980] and Lovin’s [1968]. Some preliminary experiments with
Bengali also yield promising results.

In the following section, we give a brief background on statistical stem-
ming. Sections 3 and 4 present the distance measures we used and the lexicon-
clustering-based approach. Experimental results in support of our approach
are given in Section 5. In the last section, we discuss some issues arising out of
our work and outline some directions for further study.

2. BACKGROUND

Stemming is generally considered as a recall-enhancing device. For languages
with relatively simple morphology, the influence of stemming is less than for
those with a more complex morphology. Most of the stemming experiments done
so far are for English and other west European languages [Porter 1980; Krovetz
2000].

In TREC-4, Buckley et al. [1995] demonstrated that a simple stemmer could
be easily constructed for Spanish without knowledge of the language by exam-
ining lexicographically similar words to discover common suffixes. Goldsmith
[Goldsmith et al. 2000; Goldsmith 2001] did suffix discovery, employing auto-
morphology, a minimum-description-length-based algorithm that determines
the suffixes present in a language sample with no prior knowledge of the lan-
guage. The frequency of stems and suffixes that would result from every pos-
sible breakpoint in each term in a collection is examined. An optimal break-
point for each token is then selected by applying the constraint that every
instance of a token must have the same breakpoint, and then choosing break-
points for each unique token that minimize the number of bits needed to encode
the collection. This “minimum description length” criterion captures the intu-
ition that breakpoints should be chosen such that each token is partitioned
into a relatively common stem and a relatively common suffix. Both Buckley
et al. [1995] and Goldsmith [Goldsmith et al. 2000; Goldsmith 2001] demon-
strate the effectiveness of statistical suffix discovery in information retrieval;
however, Goldsmith’s approach appears to be highly computationally intensive,
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with execution times for an initial implementation running into days for mod-
erately sized datasets. Very recently, Bacchin et al. [2005] validated that the
stemmers generated by a probabilistic model are as effective as those based on
linguistic knowledge.

Oard et al. [2001] did suffix discovery statistically from a text collection and
eliminated them from the word endings to get the stemmed output. In this
experiment, the end n-grams frequenies the strings were counted (where n =
1, 2, 3, 4) for the first 500,000 words of the text collection. Each instance of every
word was considered to get these frequencies. Then, the frequency of the most
common subsuming n-gram suffix was subtracted from the frequency of the
corresponding (n-1)-gram. For example, the frequency of “ing” was subtracted
from the frequency of “ng”, as in most cases “ng” occurred as a part of “ing”.
With these revised frequencies, all n-gram suffixes (n = 2, 3, 4) were sorted in
decreasing order. It was observed that the count versus rank plot was convex
for English and so the rank at which the second derivative was maximum was
chosen as the cutoff limit for the number of suffixes for each length.

Xu and Croft [1998] analyzed the cooccurrence of word variants in a corpus
to build a stemmer. They refined Porter’s stemmer using knowledge from the
text collection and observed interesting improvements. This shows that corpus-
based analysis of word variants can be used to enhance the performance of
stemming algorithms. They extended their approach to Spanish and reported
improvements in recall. Xu and Croft [1998] used a variant of expected mutual
information to measure the significance of the association of words. Their basic
consideration was that word variants which should be conflated will occur in
the same documents or text windows (100 words). Their approach splits up
stem classes created by aggressive stemmers like Porter’s [1980]. The stem
classes are reclustered based on a cooccurrence measure which is language
independent in that it can be applied to any set of stem classes.

In this context, we note that Arabic IR has been receiving increasing at-
tention since TREC 2001. The availability of a test collection has provided a
major boost to research, enabling the formulation of large-scale experiments
and the investigation of stemming effects in quantitative terms. Language
resources for Arabic are scarce and applying linguistic knowledge is expen-
sive. Rule-based stemmers like Porter’s [1980] are difficult to customize for
this language. This is true for Indian languages also. In order to include
these languages in information retrieval services, a generic solution is strongly
needed. Statistical approaches have the potential of providing an acceptable
solution in this scenario. Statistical techniques exploit word (co-) occurrence
patterns in a corpus. Alternatively, related words can be grouped based on
various string-similarity measures to infer stemming rules. N-gram-based
string-similarity measures are often used for grouping related words. In Ara-
bic stemming experiments, Roeck and Al-Fares [2000] used the dice coefficient
to measure string distance and clustered the result to generate equivalence
classes of words in Arabic. Initially, affixes were removed using some linguistic
knowledge and then terms were clustered. Significant improvement over the
Adamson and Boreham [1974] algorithm was observed for the dataset
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considered. Rogati et al. [2003] used a machine-learning approach to build
an Arabic stemmer. Their scheme was statistical machine-translation-based,
where an English stemmer and a parallel corpus of 10,000 sentences was used
for training. Later, monolingual, unannotated text was used for further im-
provement. This semisupervised suffix stripper gives notable improvement for
Arabic information retrieval in terms of precision. Larkey et al. [2002] extended
the approach of Xu and Croft for Arabic stemming.

Ramanathan and Rao [2003] report the only work on Indian language (i.e.,
Hindi) stemming. They use a handcrafted suffix list. The suffixes are eliminated
from word endings based on some rules. No recall/precision-based evaluation of
the work has been reported; thus the effectiveness of this stemming procedure is
difficult to estimate. In the Hindi CLIR experiments done for TIDES (translin-
gual information detection, extraction, and summarization) 2003, Larkey et al.
[2002] identified a list of 27 suffixes and stripped them from word endings to get
the stemming effect. In the surprise language evaluation, they compared both
the stemmers and observed that stemming improves retrieval performance on
unexpanded monolingual queries. For the cross-lingual run using query expan-
sion for both English and Hindi, the retrieval performance was poorer than the
baseline run.

3. STRING DISTANCE MEASURES

Distance functions map a pair of strings s and t to a real number r, where a
smaller value of r indicates greater similarity between s and t. We define a
set of string distance measures {D1, D2, D3, D4} for clustering the lexicon. The
main intuition behind defining these distances was to reward long matching
prefixes, and to penalize an early mismatch.

Given two strings X = x0x1 . . . xn and Y = y0 y1 . . . yn′ , we first define a
Boolean function pi (for penalty) as follows:

pi =
{

0 if xi = yi 0 ≤ i ≤ min(n, n′)
1 otherwise

Thus, pi is 1 if there is a mismatch in the ith position of X and Y . If X and Y
are of unequal length, we pad the shorter string with null characters to make
the string lengths equal. Let the length of the strings be n + 1. We now define
D1 as follows:

D1(X , Y ) =
n∑

i=0

1

2i
pi (1)

Our initial investigations suggested that a more effective distance measure
could be formulated by considering matches only up to the first mismatch,
and penalizing all subsequent character positions. Accordingly, we define D2,
D3, and D4 as follows. In the equations to follow, m denotes the position of
the first mismatch between X and Y (i.e., x0 = y0, x1 = y1, . . . , xm−1 =
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Fig. 1. Calculation of various distance measures.

ym−1, but xm �= ym).

D2(X , Y ) = 1

m
×

n∑
i=m

1

2i−m
if m > 0, ∞ otherwise (2)

D3(X , Y ) = n − m + 1

m
×

n∑
i=m

1

2i−m
if m > 0, ∞ otherwise (3)

D4(X , Y ) = n − m + 1

n + 1
×

n∑
i=m

1

2i−m
(4)

Note that unlike D1, the remaining distances do not consider any match after
the first mismatch occurs. The actual distances are obtained by multiplying the
total penalty by a factor which is intended to reward a long matching prefix,
penalize significant mismatches or, both.

Besides these distances, we also considered the well-known Levenstein or
edit distance between strings [Levenstein 1966]. This distance counts the min-
imum number of edit operations (inserting, deleting, or substituting a letter)
required to transform one string to the other.

In Figure 1, we consider two pairs of strings 〈astronomer, astronomically〉
and 〈astronomer, astonish〉 as examples. The values of the various distance
measures for these pairs are shown in the figure. According to D1, D2, D3, and
D4, astronomer and astonish are farther apart than astronomer and astronom-
ically. This agrees with our intuition. However, the edit distance is lower for
the second pair. This example suggests that the new distance measures may be
more suitable for our purpose than the traditional edit distance.

4. LEXICON CLUSTERING

The distance functions defined previously are used to cluster words into ho-
mogeneous groups. Each group is expected to represent an equivalence class
consisting of morphological variants of a single root word. The words within
a cluster are stemmed to the “central” word in that cluster. Since the number
of natural clusters is unknown a priori, partitional clustering algorithms like
k-means are not suitable for our task. Graph-theoretic clustering algorithms
appear to be the natural choice in this situation because of their ability to detect
natural clusters in the data.
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Three variants of graph-theoretic clustering are popular in the literature,
namely, single-linkage, average-linkage, and complete-linkage Jain et al. [1999].
Each of these algorithms is of hierarchical (agglomerative or divisive) na-
ture. In their agglomerative form, the cluster tree (often referred to as a
dendrogram) consists of individual data points as leaves which are merged
to form groups of points at higher levels. The groupings at each level repre-
sent a clustering of the data. In all the aforementioned three algorithms, the
two most “similar” groups of points (possibly singletons) are merged at each
level. The algorithms differ in the way the similarity between the groups is
defined.

In the single-linkage method, the similarity between two groups is defined as
the maximum similarity between any member of one group and any member
of the other. Groups only need to be similar in a single pair of members in
order to be merged. Single-linkage clusters can be long and branched in high-
dimensional space and the merging criterion often causes “chaining,” where a
single element is continually added to the tail of the biggest cluster. Single-
linkage clustering can be obtained by constructing a minimal spanning tree of
the data points and recursively deleting the heaviest edges to obtain the desired
number of clusters.

In the average-linkage method, the similarity between two groups of points
is defined by the mean similarity between points in one cluster and those of
the other. In contrast to single linkage, each element needs to be relatively
similar to all members of the other cluster, rather than to just one. Average-
linkage clusters tend to be relatively round or ellipsoid. Average linkage can
be approximately computed quite inexpensively by considering the similarity
between the means of each cluster (if they can be computed).

In the complete-linkage algorithm, the similarity of two clusters is calculated
as the minimum similarity between any member of one cluster and any member
of the other. Like single linkage, the probability of an element merging with a
cluster is determined by a single member of the cluster. However, in this case the
least similar member is considered, instead of the most similar. In other words,
the merged cluster has the smallest possible diameter. Consequently, complete-
linkage clusters tend to be very compact. Complete-linkage clustering can also
be described in terms of a clique. Let dn be the diameter of the cluster created in
step n of complete-linkage clustering. Define graph G(n) as the graph that links
all data points with a distance of at most dn. Then the clusters after step n are
the cliques of G(n). The nature of the lexicon suggests that the most compact
clusters would be useful. Thus, we choose the compete-linkage algorithm for
our experiments.

Determining the number of clusters. As mentioned before, in graph-theoretic
clustering methods, clusters are obtained by deleting the heaviest edges of the
cluster tree. In other words, all edges above some threshold may be deleted to
obtain the desired number of clusters. There is an inverse relation between the
chosen threshold and the number of clusters generated. A high threshold results
in a small number of clusters, each of which is relatively large. Conversely, a
low threshold results in a larger number of relatively small clusters.
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Obviously, the choice of threshold is an important issue. If a high threshold
is chosen, we get an aggressive stemmer which forms larger-than-actual stem
classes, where semantically unrelated forms are conflated erroneously. If the
chosen threshold is too low, we get a lenient stemmer which fails to conflate
related forms that should be grouped together. Thus, choosing a threshold which
results in clusters that accurately represent the true stem groups is the basic
challenge in the case of cluster-based stemming.

In our experiments (see the next section), we find a suitable edge-weight
threshold empirically. Given a lexicon, we first compute the number of clusters
generated at various threshold values. This gives us a number-of-clusters ver-
sus. threshold curve. Next, we look for step-like regions in this curve. A step is
a region where the curve flattens out, that is, the number of clusters does not
change much as the threshold value is changed. A threshold θ is then chosen
from such a region as a candidate threshold for generating the desired stem
classes.

Figures 2 and 3 show the variation in the number of clusters with threshold
value using the string distances D1, D2, D3, D4 defined previously. The lexicon
used to generate these graphs was constructed from the Wall Street Journal
(WSJ) documents on Tipster disks 1 and 2. If the number of clusters changes
by less than 10 for 2 successive threshold points on the x-axis, we regard this
portion of the curve as a step. It turns out that these curves have multiple steps
and therefore, multiple candidate threshold values may be obtained from each
curve. These candidate values are used in our experiments reported in the next
section.

5. EXPERIMENTS

The primary goals of our experiments were the following:

Expt. (1) to choose the most effective distance measure from D1, D2, D3, D4,
and determine a threshold value θ that results in good retrieval per-
formance when used with this measure in the clustering step;

Expt. (2) to verify that the proposed stemming method does indeed yield im-
provements in retrieval performance;

Expt. (3) to compare the performance of the proposed stemmer with traditional
algorithms such as Porter’s for the English language; and

Expt. (4) to study how well the method works for other languages, namely
French and Bengali.

For these experiments, a test collection is needed. While standard ones are
available for English, no such test collection is available for Bengali. Motivated
by the nature of the test corpora commonly used for IR experiments, we have
recently constructed a corpus of about 50,000 news articles taken from the most
popular Bengali daily in India. This collection has been described in more detail
by Majumder et al. [2004]. The collection has been supplemented by 25 queries.
We are in the process of collecting relevance judgements for this query set using
the pooling approach used at TREC. The absence of comprehensive relevance
judgements precludes the possibility of using the Bengali data for the entire set
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Fig. 2. Variation in number of clusters with edge-weight thresholds for D3 and D4 on WSJ.

of experiments, even though our investigations were initially motivated by the
need to construct a stemmer for Bengali. Also, since no stemmer for Bengali
exists, the only baseline that we can compare with is a retrieval run that uses
no stemming.

We therefore decided to tune and evaluate the stemmer (aforesaid experi-
ments 1–3) using a standard English collection. Accordingly, we chose the WSJ
and AP collections from TIPSTER disks 1 and 2, and TREC queries 1–200 for
our primary experiments. The size of these corpora and the corresponding lex-
ica are shown in Table I. Finally, for experiment 4, we also conducted some
runs on Bengali (using our data) and French (using the LeMonde dataset from
CLEF). The results of these experiments are presented next.

5.1 Expt. 0: Baseline Strategies

We used the SMART system Salton [1971] for all our experiments. For the
baseline run, queries and documents were indexed without any stemming.
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Fig. 3. Variation in number of clusters with edge-weight thresholds for D3 and D4 on WSJ.

Table I. Size of English Corpora Used in Our Experiments

Corpus Size (MB) # Documents Size of Lexicon

AP 497 164601 262128 words

WSJ 514 173252 179387 words

Stopwords were removed, however. The Lnu.ltn Buckley et al. [1996] weight-
ing strategy was used. We then indexed the documents and queries using (in
turn) two conventional stemmers for English: Porter’s [1980] and Lovin’s [1968].
SMART uses a version of Lovin’s stemmer by default. As most of the literature
refers to Porter’s stemmer, we also incorporated it within SMART. Additionally,
we implemented a stemmer described by Roeck and Al-Fares [2000] that is also
clustering based, but which uses an n-gram-based string-similarity measure.
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Table II. Retrieval Results for Various Distance Measures

and Thresholds (WSJ, queries 151–200)

D1

θ 0.023 0.046 0.069∗ 0.104 0.138∗

AvgP 0.3634 0.3732 0.3677 0.3469 0.3367

D2

θ 0.21 0.31 0.41∗ 0.54∗ 0.61∗

AvgP 0.3675 0.3721 0.3600 0.3403 0.3401

D3

θ 1.15∗ 1.35 1.55∗ 1.75 2.15∗

AvgP 0.3748 0.3787 0.3796 0.3785 0.3727

D4

θ 0.56∗ 0.71∗ 0.86∗ 1.01 1.16

AvgP 0.3650 0.3662 0.3775 0.3726 0.3396

5.2 Expt. 1: Distance Measure and Threshold Selection

Next, we integrated the four clustering-based stemmers within SMART. Our
first set of experiments was intended to help us choose the most effective dis-
tance measure, along with an appropriate threshold value for use in subsequent
experiments. For these experiments, we used only the WSJ subcollection and
TREC queries 151–200, with the hope that a threshold value learned from this
dataset would be stable enough to be used on other datasets as well (see the
end of this section for verification).

For each of the distances D1, D2, D3, and D4, we considered 5 different
clustering thresholds for a total of 20 retrieval runs. Table II shows the mean
average precision obtained for each of these retrieval runs. The initial set of
threshold values that we tried corresponds to the midpoints of the step-like
regions in Figures 2 and 3. These have been marked with a∗ in Table II. The
remaining threshold values were added at roughly equal intervals before, in
between, or after the initially chosen values.

The results for each distance measure were analyzed using the Tukey HSD
test [Hsu 1986]. Based on this test, the results can be roughly separated into
two categories for D1, D2, and D4. For example, when using D2, setting θ to 0.21,
0.31, or 0.41 yields significant improvements compared to using the other two
values of θ . However, the differences between these three runs were not found
to be significant. Likewise, for D4, results obtained using θ = 0.56, 0.71, 0.86,
and 1.01 were not significantly different, but setting θ = 1.16 caused a sign-
ficant degradation in performance. Interestingly, for D3 no significant differ-
ences in retrieval performance were found for the range of threshold values
used.

Table III presents a comparison of the various distance measures. A suitable
threshold value is chosen for each measure based on the results in Table II. The
results of the baseline (no stemming), Porter, Lovins, and n-gram-based runs
are also included for comparison. The differences in effectiveness of the four
distance measures were not found to be significant, but since D3 seems to be
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Table III. Retrieval Results for Various Stemmers (WSJ, queries 151–200)

No Stemming D1 − 0.046 D2 − 0.31 D3 − 1.55 D4 − 0.86 Lovins Porter n-gram

Rel ret 3082 3235 3249 3268 3265 3318 3290 3171

P20 0.4920 0.5020 0.4960 0.5090 0.5130 0.5030 0.5060 0.4960

Avg.P 0.3505 0.3732 0.3721 0.3796 0.3775 0.3746 0.3746 0.3595

Table IV. Performance of D3-Based Stemmer at Different

Clustering Thresholds (AP, queries 151–200)

θ → No-Stem 1.35 1.55 2.15

Rel Ret 3887 4140 4133 4130

P20 0.4740 0.4940 0.4900 0.4960

Avg.P 0.3514 0.3762 0.3776 0.3771

Fig. 4. Number-of-clusters vs. threshold curve for AP.

the least sensitive with respect to variation in threshold value, we chose this
measure for our subsequent experiments.

Our next goal was to study the stability of the threshold chosen earlier. We
therefore tested the D3-based stemmer using a different collection, namely the
AP articles from TIPSTER disks 1 and 2 (the query set remained the same).
Table IV summarizes the results obtained using the D3-based stemmer at vari-
ous clustering thresholds for the AP dataset. Once again, the performance of the
stemmer is not significantly affected by the choice of threshold; in particular,
θ = 1.55 appears to be an acceptable choice for this dataset also. An exami-
nation of the number-of-clusters versus threshold curve for the AP lexicon (see
Figure 4) shows that there is a “step” between θ = 2.00 and 2.25. From Table IV,
it is clear that a threshold value chosen from this step would also be acceptable
for this dataset.

5.3 Expts. 2 and 3: Comparison with Baseline Strategies

The next set of experiments compares the performance of the D3-based stem-
mer with baseline strategies (no stemming, and Porter’s stemmer). For this
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Table V. Performance of D3-Based Stemmer for TREC Queries 1–200

WSJ

No Stemming D3 Porter

Rel ret 16831 17245 (+2.5%) 17236 (+2.4%)

P20 0.5293 0.5368 (+1.4%) 0.5340 (+0.9%)

Avg.P 0.3647 0.3811 (+4.5%) 0.3789 (+3.9%)

AP

No stemming D3 Porter

Rel ret 16241 16732 (+3.0%) 16805 (+3.5%)

P20 0.4732 0.4857 (+2.6%) 0.4895 (+3.4%)

Avg.P 0.3799 0.3916 (+3.1%) 0.3956 (+4.1%)

Fig. 5. Performance of various stemming strategies for English.

comparison, we use TREC queries 1–200 with both the AP and WSJ collections
from TIPSTER disks 1 and 2. The results are summarized in Table V. Figure 5
shows the same comparison graphically.
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Table VI. Queries for Which Performance Differs by > 5%

WSJ AP

D3 better Porter better D3 better Porter better

98 (40) 102 (36) 89 (26) 103 (41)

In terms of overall performance, our stemmer and Porter’s both yield compa-
rable improvements over the baseline (no stemming). The difference in mean
average precision for the baseline and D3 runs was found to be statistically
significant (paired t-test, 200 observations, P = 0.0026 for AP, P = 1.2 × 10−6

for WSJ). In contrast, the difference in performance between the D3-based and
Porter’s stemmers was not significant (paired t-test, P = 0.23 for AP, P = 0.27
for WSJ). We repeated the tests of significance using the number of relevant doc-
uments retrieved for each query (instead of the average precision), and reached
the same conclusions.

5.3.1 Query-Wise Analysis of Results. To better understand the difference
between the two stemmers, we did a query-by-query analysis of the results.
Table VI shows the number of queries for which each method outperforms the
other (in terms of average precision). The numbers in parentheses indicate the
number of queries for which the performance of the two stemmers differs by
more than 5%.

We manually examined some of these queries where the performance vari-
ation was large. Query number 128 (i.e., privatization of state assets) is an
example where the D3 stemmer achieves an average precision of 0.3381, and
retrieves 211 relevant documents. The corresponding figures for Porter’s stem-
mer are 0.2296 and 175. The total number of relevant documents for this query
is 296. The key to the performance difference lies in that fact that Porter’s
stemmer conflates both the query terms “privatization” and “private” to “pri-
vat”. Because of such aggressive stemming, a specific term like “privatization”
(which happens to be important for this particular query) is conflated to a more
general term, and gets a low idf (inverse document frequency) value. In con-
trast, D3 assigns these words to different clusters. As a result, the query is
indexed using the more specific term “privatization”. Of course, it is possible
to construct examples where conflating “privatization” and “private” would be
beneficial. In such cases, Porter’s stemmer would perform better than D3.

Query 26 (i.e., tracking influential players in multimedia) is one such exam-
ple. This query contains the word “develop”. At θ = 1.55, D3 places “develop” and
“development” into two separate clusters, whereas Porter correctly places them
in the same equivalence class. As expected, relevant documents containing the
word “development” are ranked more highly by Porter’s stemmer than D3. Like-
wise, for query 75 (i.e., automation), Porter’s stemmer converts “automation”,
“automate”, and “automated” to “autom”, while D3 places these words in two
separate clusters.

One general problem with Porter’s stemmer (so far as retrieval is concerned)
is that it does not seem to strip the possessive marker ’s from the end of words.1

1The version of Porter’s stemmer that is available from http://snowball.tartarus.org/ does not do

this.
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Fig. 6. Number-of-clusters vs. threshold curve for the LeMonde corpus.

Table VII. Performance of D3-Based Stemmer on the French LeMonde

Corpus

No Stemming D3(1.15) D3(1.55) D3(2.10) Porter

Rel ret 516 540 538 538 540

P20 0.2222 0.2611 0.2578 0.2522 0.2467

Avg.P 0.3987 0.4301 0.4334 0.4153 0.4284

Likewise, words like “largest” and “strongest” are not converted to “large”,
“strong”.

Overall, Table VI shows that in a large set of sample queries, the honors are
about equally divided between the two methods. This is also in keeping with
the results of the t-tests reported earlier.

5.4 Expt. 4: Performance on French and Bengali Data

5.4.1 French Run. For these experiments, we used the LeMonde94 text
collection, along with 50 French topics (41 to 90) designed for this corpus. This
data is available as a part of the CLEF dataset. We conducted 3 retrieval runs:
the first does not use stemming, the second uses the French version of Porter’s
stemmer available from http://snowball.tartarus.org/, and the third uses the
D3-based stemmer.

As in the case of English, the issue of threshold selection has to be addressed.
In accordance with the strategy suggested in Section 4, we first ploted the
number-of-clusters versus threshold curve (see Figure 6) to identify a suitable
threshold for clustering the lexicon. Three prominent steps are observed around
θ = 1.15, 1.55, and 2.10. The results for all runs are shown in Table VII.

We first observe that a threshold of 1.55 works well for this collection also.
As in the case of English, the D3-based method yields significant improvements
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Fig. 7. Number-of-clusters vs. threshold curve for the ABP corpus.

in performance over the baseline (paired t-test, 45 observations, P = 0.03).2,
Also, its performance is comparable to that obtained using Porter’s stemmer
(paired t-test, 45 observations, P = 0.73).

5.4.2 Bengali Run. Unlike English and French, there is no available
judged relevance corpus for Bengali. In general there are few available lan-
guage resources for Indian languages. We constructed a corpus containing news
articles from the most popular printed Bengali daily in India, Anandabazar Pa-
trika (ABP). The Bengali alphabet set is larger than English and has about 49
characters. The size of the Bengali lexicon extracted from the ABP corpus was
301,562 words. The Bengali lexicon was then clustered using complete-linkage
agglomerative clustering. Once again, for clustering the Bengali lexicon, we
chose D3 as our distance measure.

A stopword list for Bengali was constructed by taking the 500 most fre-
quent terms from the lexicon and then manually identifying a list of 354 words
from the whole set. The stopwords thus selected were mostly articles and in-
declinables, prepositions and conjunctions. Interestingly, nouns like Budhbar
(Wednesday) and Kolkata (Calcutta) were among the top 500 terms, although
we did not include them in the stopword list. For all runs the stopwords were
removed first. We constructed 25 topics in Bengali with title and narration
fields and retrieved 20 documents using the title only. The average title length
in terms of words is 4.4. Since comprehensive relevance judgements were un-
available, we manually judged the top 20 documents per query and measured
the precision for this set (P20).

We started by adopting the same threshold value (1.55) that works well for
English and French. For further clues, we examined the number-of-clusters ver-
sus threshold curve for Bengali (see Figure 7). The curve has several step-like
regions, with a fairly long step of around 0.55. We also performed a retrieval run

2Since there were no relevant documents for 5 queries, the evaluation was based on 45 (rather than

50) queries.
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Table VIII. Number of Relevant Documents and P20 in Bengali Runs

Unstemmed-run Stemmed-run@1.55 Stemmed-run@0.55

Rel ret 178 216 (+38) 248 (+70)

P20 0.3560 0.4320 (+21.3%) 0.4960 (+39.3%)

with this threshold. We could have chosen points from the remaining steps also,
but this procedure was skipped since precision has to be manually measured
for every point. The results for these runs are shown in Table VIII.

Unstemmed and stemmed runs at 1.55 and 0.55 retrieve 178, 216, and
248 relevant documents, respectively. Stemmed runs thus retrieve 39 and 70
more relevant documents (an average of 1.3 and 2.33 more relevant documents
per query). The relative improvement observed using stemming for Bengali is
21.3% and 39.3%, respectively. These improvements were found to be statis-
tically significant (paired t-test, 25 observations, P -value (1-tail) = 0.010 and
0.004, respectively). Thus, for a highly inflected language like Bengali, stem-
ming substantially improves retrieval effectiveness.

Table VIII also suggests that while θ = 1.55 works well for both English
and French, better results may be achievable for Bengali with a lower thresh-
old. This is not entirely surprising, since Bengali and English orthography are
different by nature. However, a detailed investigation of this issue—threshold
selection for Bengali and related languages (e.g., Assamese, Oriya)—will have
to wait until comprehensive datasets are available in these languages.

6. CONCLUSIONS AND FUTURE WORK

With the worldwide proliferation of the Internet, increasing amounts of infor-
mation are becoming available online in languages that have not received much
attention from the IR/NLP community and for which language resources are
scarce. For this available information to be useful, it has to be indexed and
made searchable by an IR system. Stemming is one of the basic steps in the in-
dexing process. In this article, we have proposed a stemming algorithm that is
corpus based, and does not rely on linguistic expertise. Retrieval experiments
on English, French, and Bengali datasets show that the proposed approach
is effective for languages that are primarily suffixing in nature. More specifi-
cally, we conclude that: (i) Stemming improves recall for Indian languages like
Bengali; and (ii) the performance of a stemmer generated by clustering a lexi-
con without any linguistic input is comparable to that obtained using standard,
rule-based stemmers such as Porter’s. Our experiments have, however, raised
some issues that need further investigation in future work.

Using a corpus sample for stemmer generation. Clustering is computation-
ally the most expensive step in our approach. One way to cut down on the
amount of time needed for this step would be to use a smaller lexicon con-
structed from a subsample of a given corpus. As sample size decreases, the
possibility of covering most morphological variants will also decrease. Natu-
rally, this would result in a stemmer with poorer coverage. The nature of the
corpus from which the lexicon is generated also determines the coverage of the
final stemmer. A corpus that includes documents besides news articles may
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Fig. 8. Trie structure implemented on a cluster.

enrich the lexicon. In future work, we intend to study the effect of corpus size
and nature on building language-independent stemmers.

Handling excessive conflation. For the Bengali lexicon, we have observed a
few instances where two semantically different terms fall in the same cluster
due to their string similarity. For example, Akram (the name of a cricketer
from Pakistan) and akraman (to attack) fall in the same cluster, as they share
a significant prefix. This problem cannot be addressed by tuning the clustering
threshold, since a threshold that separates these strings would also separate
pairs such as akramankarider (the attackers’) and akraman, which rightfully
belong to a single cluster.

To handle such cases in Bengali, the following strategy may help. Clusters
containing two or more roots and their morphological variants are generally
bigger than average. We could build a Trie from the strings in these clusters,
and check the fan-outs at each node. If the fan-out exceeds a certain limit at
a particular node, we may hypothesize that the word, formed by the alphabet
sequence from the root to that node, forms a separate root word. Figure 8 shows
how this approach would work for the particular example cited previously. Fur-
ther experimentation using a much larger set of real-life queries is needed to
estimate the seriousness of this problem, and the effectiveness of the trie-based
approach outlined before.
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