CS60050: Machine Learning

Mid-semester Examination, Autumn 2017

Time= 2 hrs. Marks: 45. Answer all THREE questions.

1.(a) Show a decision tree that realizes the parity function of four Boolean variables, *A*, *B*, *C*, and *D*. A parity function evaluates to 1 if there are odd number of ones in input, and 0 otherwise. [5]

(b) Build a decision tree to classify the following patterns. Use the information gain criterion. Show all the calculations systematically. What Boolean function does the tree realize? [10]

Pattern	Class
(x1,x2,x3)	
(0, 0, 0)	0
(0, 0, 1)	0
(0, 1, 0)	0
(0, 1, 1)	0
(1, 0, 0)	0
(1, 0, 1)	1
(1, 1, 0)	0
(1, 1, 1)	1

2. Consider two classes ω_1 and ω_2 . We want to classify a variable *x* into one of these two classes. Suppose $p(x|\omega_1)$ and $p(x|\omega_2)$ are defined as follows: [10+5]

$$p(x|\omega_1) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}, \forall x$$
$$p(x|\omega_2) = \frac{1}{4}, -2 < x < 2$$

(a) Find the minimum error classification rule g(x) for this two-class problem, assuming $p(\omega_1) = p(\omega_2) = 0.5$.

(b) There is a prior probability of class 1, designated as π_1^* , so that if $p(\omega_1) > \pi_1^*$, the minimum error classification rule is to always decide ω_1 regardless of x. Find π_1^* . There is no π_2^* so that if $p(\omega_2) > \pi_2^*$, we would always decide ω_2 . Why not?

3. (a). Consider a support vector machine whose input space is \mathbb{R}^2 , and in which the kernel function is computed as, $k(x, y) = (x \cdot y + 1)^2 - 1$, (bold letters represents vectors in \mathbb{R}^2). Find the mapping $\phi(x)$ to the feature space corresponding to this kernel. Show your derivation. [5]

(b) Let $X_1 = (1, -1, -1)$, $y_1 = -1$, $X_2 = (-3, 1, 1)$, $y_2 = 1$, $X_3 = (-3, 1, -1)$, $y_3 = -1$, $X_4 = (1, 2, 1)$, $y_4 = -1$, and $X_5 = (-1, -1, 2)$. $y_5 = 1$, be five binary labeled training examples. These points are linearly separable. Derive the optimum margin classifier (support vectors, weights and threshold value) and the margin. [10]

----- BEST WISHES ------