Mid-semester Examination, Autumn 2017

Time= 2 hrs. Marks: 45. Answer all THREE questions.
1.(a) Show a decision tree that realizes the parity function of four Boolean variables, A, B, C, and D. A parity function evaluates to 1 if there are odd number of ones in input, and 0 otherwise.
(b) Build a decision tree to classify the following patterns. Use the information gain criterion. Show all the calculations systematically. What Boolean function does the tree realize?

Pattern $(x 1, x 2, x 3)$	Class
$(0,0,0)$	0
$(0,0,1)$	0
$(0,1,0)$	0
$(0,1,1)$	0
$(1,0,0)$	0
$(1,0,1)$	1
$(1,1,0)$	0
$(1,1,1)$	1

2. Consider two classes ω_{1} and ω_{2}. We want to classify a variable x into one of these two classes. Suppose $p\left(x \mid \omega_{1}\right)$ and $p\left(x \mid \omega_{2}\right)$ are defined as follows:
[$10+5$]

$$
\begin{aligned}
& p\left(x \mid \omega_{1}\right)=\frac{1}{\sqrt{2 \pi}} e^{\frac{-x^{2}}{2}}, \forall x \\
& p\left(x \mid \omega_{2}\right)=\frac{1}{4},-2<x<2
\end{aligned}
$$

(a) Find the minimum error classification rule $g(x)$ for this two-class problem, assuming $p\left(\omega_{1}\right)=p\left(\omega_{2}\right)=0.5$.
(b) There is a prior probability of class 1 , designated as π_{1}^{*}, so that if $p\left(\omega_{1}\right)>\pi_{1}^{*}$, the minimum error classification rule is to always decide ω_{1} regardless of x. Find π_{1}^{*}. There is no π_{2}^{*} so that if $p\left(\omega_{2}\right)>\pi_{2}^{*}$, we would always decide ω_{2}. Why not?
3. (a). Consider a support vector machine whose input space is \mathbb{R}^{2}, and in which the kernel function is computed as, $k(\boldsymbol{x}, \boldsymbol{y})=(\boldsymbol{x} \cdot \boldsymbol{y}+1)^{2}-1$, (bold letters represents vectors in \mathbb{R}^{2}). Find the mapping $\phi(\boldsymbol{x})$ to the feature space corresponding to this kernel. Show your derivation.
(b) Let $X_{1}=(1,-1,-1), y_{1}=-1, X_{2}=(-3,1,1), y_{2}=1, X_{3}=(-3,1,-1), y_{3}=-1, X_{4}=(1,2,1), y_{4}=-1$, and $X_{5}=$ $(-1,-1,2) . y_{5}=1$, be five binary labeled training examples. These points are linearly separable. Derive the optimum margin classifier (support vectors, weights and threshold value) and the margin.

