


Instructions: Answer all TEN questions. Time = 3hrs. Total marks = 60. Question 1 has one mark per answer 
box. Questions 2-10 have two marks per answer box. Write your answers only in the space provided. The 
question paper has total 12 pages. 
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1. State whether the following statements are true/false (T/F).                     

 

i. Kernel matrices are always positive definite. 

 

ii. The backpropagation algorithm employs gradient descent. 

 

iii. The perceptron learning rule converges for linearly separable data. 

 

iv. Complete linkage clustering is computationally cheaper compared to single linkage. 

 

v. K-Means clustering is computationally cheaper compared to single linkage clustering. 

 

vi. Sequential Forward Search always generates the optimal feature subset.  

 

vii. Classifiers having lower bias have a higher variance.  

 

viii. A weak learner for a binary classification problem has error probability more than 0.5. 

 

ix. The hypothesis class of half planes shatter any three non-collinear points in two-dimension. 

 

x. Sample complexity of learning a hypothesis class increases with its VC-dimension. 

 

 

2(a). A hypothetical SVM model has the following values of lagrange multipliers  and support vectors: 

 Support vector y 

1 (1, 1, 1) +1 

0.5 (0, 2, 1) 1 

1 (1, 0, 2) 1 

 

Suppose that the linear kernel is used. Compute the output y of this SVM model when the input feature vector 

is (0.3, 0.8, 0.6). 

 

      T/F 

      T 

      T 

      F 

      T 

      F 

      T 

      T 

      T 

      F 

      -1/-1.3 



2(b). Suppose we have four training examples in two dimensions, positive examples at X1 = [0, 0], X2 = [2, 2], 

and negative examples at X3 = [h, 1], X4 = [0, 3], where we treat 0  ≤ h ≤ 3 as a parameter. 

i. How large can h be so that the training points are still linearly separable?    

 

ii. What is the margin achieved by the maximum margin boundary as a function of h? 

        

 

3(a). A kernel function K(x, z) measures the similarity between two instances x and z in a transformed space. 

For a feature transform x → ɸ(x) the kernel function is K(x, z) = ɸ(x).ɸ(z). Consider the two dimensional input 

vectors x = (x1, x2). For each of the kernel function below what is the corresponding feature transform?  

i. K(x, z) = 1 + x.z 

(A) ɸ(x) = (x1, x2)      (B) ɸ(x) = (1, x1, x2)     (C)    ɸ(x) = (x1
2, x2

2)      (D) ɸ(x) = (1, x1
2, x2

2)       

 

ii. K(x, z) = (x.z)2 

(A) ɸ(x) = (x1
2, x2

2)                                                             (B) ɸ(x) = (1, x1
2, x2

2)      

(C)    ɸ(x) = (x1
2, x2

2,  2 x1x2)                                          (D) ɸ(x) = (1, x1
2, x2

2, 2 x1x2)       

 

iii. K(x, z) = (1 + x.z)2 

(A) ɸ(x) = (1, x1
2, x2

2)                                                         (B) ɸ(x) = (1, x1
2, x2

2, 2 x1x2)       

(C)    ɸ(x) = (1, x1
2, x2

2,  2 x1x2,  2 x1,  2 x2)                (D) ɸ(x) = (1, x1
2, x2

2, 2 x1x2,  x1, x2)       

 

3(b). Multiple kernels can be combined to produce new kernels. For example, K(x, z) = K1(x, z) + K2(x, z) is a 

valid combination. Suppose kernel K1 has the associated feature transformation ɸ1 and K2 has the associated 

feature transformation ɸ2. What is the feature transform associated with the combinations given below? 

i. K(x, z) = αK1(x, z) 

(A) ɸ(x) = ɸ1(x)                                       (B) ɸ(x) = α2ɸ1(x)                                                                

(C) ɸ(x) = αɸ1(x)                           (D) ɸ(x) =  𝛼ɸ1(x) 

 

 

  <= 1 

1 − ℎ

 2
 

      B 

      C 

      C 

      D 



ii. K(x, z) = αK1(x, z) + βK2(x, z) 

(A) ɸ(x) =α ɸ1(x) + β ɸ2(x)   (B) ɸ(x)  =  α ɸ1(x) +    β ɸ2(x)  

(C) ɸ(x) =* α ɸ1(x), β ɸ2(x)]               (D) ɸ(x)  =[  α ɸ1(x),     β ɸ2(x)]  

4. We are given the following four data points in two dimension: X1 = (2, 2), X2 = (8, 6), X3 = (6, 8), X4 = (2, 4). 

We want to cluster the data points into two clusters C1 and C2 using the K-Means algorithm. Manhattan 

distance is used for clustering. To initialize the algorithm we consider C1 = {X1, X3}, and C2 = {X2, X4}. After two 

iteration of the K-Means algorithm, the cluster memberships are – 

 

 

 

5. We would like to cluster the natural numbers from 1 to 1024 into two clusters using hierarchical 

agglomerative clustering. We will use Euclidean distance as our distance measure. We break ties by merging 

the clusters in which the lowest natural number resides. For example, if the distance between clusters A and B 

is the same as the distance between clusters C and D, we would choose A and B as the next clusters to merge 

if min{A, B} < min{C, D} , where {A, B} are the set of natural numbers assigned to clusters A and B. For each of 

the clustering methods mentioned below, specify the number of elements assigned to each of the two clusters 

obtained by cutting the dendogram at the root. 

i. Single linkage:  

 

ii. Complete linkage: 

 

iii. Average linkage:  

 

6. In a course the probability that a student gets a grade “A” is P(A) = ½ , a “B” grade is P(B) = μ, a grade “C” is 

P(C) = 2μ, and a grade “D” is P(D) = ½ - 3μ. We are told that c students get “C” and d students get “D”. We do 

not know how many students got exactly an “A” or exactly a “B”. But we do know that h students got either 

“A” or “B”, i.e., a + b = h. Our goal is to use the Expectation Maximization algorithm to obtain an estimate of μ. 

i. Expectation step: Which formula compute the expected value of a and b given μ? 

(A)    𝑎 =  
1

2
1

2
+ ℎ

𝜇               𝑏 =  
𝜇

1

2
+ ℎ

𝜇  (B)    𝑎 =  
1

2
1

2
+ 𝜇

ℎ               𝑏 =  
𝜇

1

2
+ 𝜇

ℎ 

(C)    𝑎 =  
𝜇

1

2
+ 𝜇

ℎ               𝑏 =  
1

2
1

2
+ 𝜇

ℎ  (D)    𝑎 =  
1

2

1 +
𝜇

2

ℎ               𝑏 =  
𝜇

1+
𝜇

2
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      D 

    C1 = {X1, X4}, and C2 = {X2, X3}. 

      B 

     1023 , 1  

      512 ,  512  

      512 ,  512  



ii. Maximization step: Given the expected values of a and b, which formula computes the maximum likelihood 

estimate of 𝜇? 

(A) 𝜇  = 
ℎ−𝑎+𝑐

6(ℎ−𝑎+𝑐+𝑑)
   (B) 𝜇  = 

ℎ−𝑎+𝑑

6(ℎ−2𝑎−𝑑)
 

(C) 𝜇  = 
ℎ−𝑎

6(ℎ−2𝑎+𝑐)
   (D) 𝜇  = 

2(ℎ−𝑎)

3(ℎ−𝑎+𝑐+𝑑)
 

 

7. Given three data points in two-dimensional space: (1, 1), (2, 2), and (3, 3). 

i. What is the first principal component? 

ii. If we want to project the original data points into one dimensional space using the principal component, 

what is the variance of the projected data? 

 

iii. For the projected data above, now, if we represent them in the original two-dimensional space, what is the 

reconstruction error? 

 

8(a). In the following questions i-iv, mark ALL neural networks (1/2/3/4) that can compute the same function 

as the b6oolean expression mentioned. If none of the neural nets can do this, mark None. Booleans will take 

values 0, 1, and each perceptron will output values 0, 1. You may assume that each perceptron also has as 

input a bias feature that always takes the value 1. Connection weights are allowed to take on any values. It 

may help to write out the truth table for each expression. 

 

i. A  

 

ii. A OR B 

 

iii. B XOR C 

 

iv. (A XOR B) XOR C 

      A 

      (1/ 2, 1/ 2) 

      4/3 = 1.33 or 2 

      0 

      1, 2, 3, 4 

      1, 2, 3, 4 

      3, 4 

      4 



8(b). Consider the neural network shown below: 

 

Assume that all the internal nodes and the output nodes use the tanh activation function. Note that derivative 

of tanh(x) = 1 – tanh2(x). Backpropagation is applied on this network to minimize the squared error. Let o1, o2, 

and o3 be the output of the neurons 1, 2, and 3 respectively, and x1, x2 be the input values. Let 1, 2, and 3 be 

the values backpropagated by the neurons 1, 2 and 3 respectively. Complete the three expressions below: 

i. 3 = (1-o3
2) x          

ii. 2 = (1-o2
2) 3 x                             

iii. 1 = (1-o1
2) 3 x   

 
9. Imagine that you are given the following set of training examples (E1-E5).  All the features are Boolean-
valued. 

 F1 F2 F3 Class 
 

E1:  T  T F    + 
E2:  F  T T    + 
E3:  T  F T    - 
E4:  F  T F    - 
E5:  F  F T    - 

 

Assume that we are using a very weak learner within the AdaBoost algorithm.  This simplistic learner simply 
chooses for its learned model the lowest-numbered feature that has not yet been used.  Its only intelligent 
aspect is that it decides whether or not to negate this feature, depending on which option works best.  I.e., 
the first time called it will return either F1 or NOT(F1) as its model. We perform two rounds of AdaBoost. In 
each round five examples are used for training. In the first round the original data set is used. The second 
round training examples are obtained by re-sampling the original data using the model learned in first round. 
What are the training examples that likely to be boosted for the third round? 
 
 
 

 

       E3/E4 

(y-o3)      

 w6 

w5 

 

                            



10. Consider the deterministic grid world shown below with the absorbing goal-state G. Here the immediate 

rewards are 10 for the labeled transitions and 0 for all unlabelled transitions. Use discount factor γ = 0.8. 

 

 

 

 

 

i. What is the value of V* for the state (1, 2)?              

 

ii. Consider applying Q-learning to this grid world. The Q-table values are all initialized to 0’s. Assume that the 

agent begins in the bottom left grid square and then travels clockwise along the perimeter of the grid until it 

reaches the absorbing goal state, completing a training episode. Specify which Q values are updated as a result 

of two such episodes, and give their revised values. 

 

 

---- END ---- 

Rough Work

 

 

                                  G 
10 

10 

10 

1 2 3 

1 

2 

                               8  (0) 

     Q((3,1),L) = 10, Q((3,2),D) = 8 (Q((1,3),L) = 10, Q((2,3),D) = 8  ) 



Rough Work 

  



Rough Work 
  



Rough Work 
  



Rough Work 
 


