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Introduction

Supervised Classification

Learning from Experience

“Automate the work of the expert”
Tries to model ρ(X ,C)

Physical Process Usually unknown

Expert

Data set

Classification
Model
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Introduction

Supervised Classification

Classification Model
Classifier labels new data (unknown class value)

Expert

Classification
Model

Data setData set
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Introduction

Motivation for Honest Evaluation

Many classification paradigms

Data set
...

X4X4X4
...

Naive Bayes

Decision Tree

Neural Net
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Introduction

Motivation for Honest Evaluation

Which is the best paradigm for a classification problem?

Data set
...

X4X4X4
...

Naive Bayes

Decision Tree

Neural Net

? ?

?
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Introduction

Motivation for Honest Evaluation

Many parameter configurations

Data set
...

...

Naive Bayes

Naive Bayes
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Introduction

Motivation for Honest Evaluation

Which is the best parameter configuration for a
classification problem?

Data set
...

...

Naive Bayes

Naive Bayes

?

?
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Introduction

Motivation for Honest Evaluation

Honest Evaluation
Need to know the goodness of a classifier
Methodology to compare classifiers
Assess the validity of evaluation/comparison

Steps for Honest Evaluation
Scores: quality measures
Estimation methods: estimate value of a score
Statistical tests: comparison among different solutions
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Outline of the Tutorial

1 Introduction

2 Scores

3 Estimation Methods

4 Hypothesis Testing
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Scores

Motivation

How to compare classification models?

Score
Function that provides a quality measure for a classifier when
solving a classification problem
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Motivation

How to compare classification models?

We need some way to measure 

the classification performance!!!

Score
Function that provides a quality measure for a classifier when
solving a classification problem
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Scores

Motivation

What Does Best Quality Mean?
What are we interested in?
What do we want to optimize?
Characteristics of the problem
Characteristics of the data set

Different kind of scores
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Scores

Scores

Based on Confusion Matrix
Accuracy/Classification error

Recall
Specificity
Precision
F-Score

Based on Receiver Operating Characteristics (ROC)

Area under the ROC curve (AUC)
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Scores

Based on Confusion Matrix
Accuracy/Classification error −→ Classification

Recall
Specificity −→ Information Retrieval
Precision
F-Score
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Scores

Scores

Based on Confusion Matrix
Accuracy/Classification error −→ Classification

Recall
Specificity −→ Information Retrieval
Precision
F-Score

Based on Receiver Operating Characteristics (ROC)

Area under the ROC curve (AUC) −→ Medical Domains
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Scores

Confusion Matrix

Two-Class Problem

Prediction

c+ c− Total

A
ct

ua
l c+ TP FP N+

c− FN TN N−

Total N̂+ N̂− N
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Scores

Confusion Matrix

Several-Class Problem

Prediction

c1 c2 c3 . . . cn Total

A
ct

ua
l

c1 TP1 FN12 FN13 . . . FN1n N1

c2 FN21 TP2 FN23 . . . FN2n N2

c3 FN31 FN32 TP3 . . . FN3n N3

. . . . . . . . . . . . . . . . . . . . .

cn FNn1 FNn2 FNn3 . . . TPn Nn

Total N̂1 N̂2 N̂3 . . . N̂n N
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Scores

Two-Class Problem - Example

X
1

X
2

-1 0 1 2 3 4 5 6
-1

0

1

2

3

4

5

6

X1 X2 C
3,1 2,4 c+

1,7 1,8 c−

3,3 5,2 c+

2,6 1,7 c−

1,8 2,9 c+

0,3 2,3 c−

. . . . . . . . .
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Scores

Two-Class Problem - Example

X
1

X
2

c
+

c-

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

6

Prediction
c+ c− Total

A
ct

ua
l c+ 10 2 12

c− 2 8 10
Total 12 10 22
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Scores

Accuracy/Classification Error

Definition
Data samples classified correctly/incorrectly

X
1

X
2

c
+

c-

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

6

Prediction
c+ c− Total

A
ct

ua
l c+ 10 2 12

c− 2 8 10
Total 12 10 22

ε(φ) = p(φ(X ) 6= C) = Eρ(x ,c)[1− δ(c, φ(x))]
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Scores

Accuracy/Classification Error

X
1

X
2

c
+

c-

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

6

Prediction
c+ c− Total

A
ct

ua
l c+ 10 2 12

c− 2 8 10
Total 12 10 22

ε =
FP + FN

N

=
2 + 2

22
= 0,182

- 27 -



logo

Classifier performance evaluation and comparison

Scores

Skew Data

X
1

X
2

-3 -2 -1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4

5

6

7

X1 X2 C
0,8 2,2 c+

0,47 2,3 c+

0,5 2,1 c+

2,4 2,9 c−

3,1 1,2 c−

2,5 3,1 c−

. . . . . . . . .
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Scores

Skew Data - Classification Error

X
1

X
2

c-

c+

-3 -2 -1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4

5

6

7

Prediction
c+ c− Total

A
ct

ua
l c+ 0 5 5

c− 7 993 1000
Total 7 998 1005

ε =
7 + 5
1005

= 0,012

Very low ε!!
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Scores

Skew Data - Classification Error

X
1

X
2

c-

c+

-3 -2 -1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4

5

6

7

Prediction
c+ c− Total

A
ct

ua
l c+ 0 5 5

c− 0 1000 1000
Total 0 1005 1005

ε =
0 + 5
1005

= 0,005

Better??
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Scores

Positive Unlabeled Learning

? ?

?

?

?

?

?
?

?

?

?

?

?
?

?

?

?

X
1

X
2

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

6

Positive Labeled Data
Only positive samples labeled
Many unlabeled samples:

Positive?
Negative?

Classification error is useless
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Scores

Recall

Definition
Fraction of positive class samples
correctly classified

Other names
{

True positive rate
Sensitivity

r(φ) =
TP

TP + FN
=

TP
P

Definition Based on Probabilities

r(φ) = p(φ(x) = c+|C = c+) = Eρ(x |C=c+)[δ(φ(x), c+)]
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Scores

Skew Data - Recall

X
1

X
2

c-

c+

-3 -2 -1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4

5

6

7

Prediction
c+ c− Total

A
ct

ua
l c+ 0 5 5

c− 7 993 1000
Total 7 998 1005

r(φ) =
0

0 + 5
= 0

Very bad recall!!
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Scores

Positive Unlabeled Learning - Recall

? ?

?

?

?

?

?
?

?

?

?

?

?
?

?

?

?

X
1

X
2

c+

c
-

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

6 Prediction
c+ c? Total

A
ct

ua
l c+ 0 5 5

c? 7 10 1
Total 12 10 22

r(φ) =
5

0 + 5
= 1

It is possible to
calculate recall in
positive-unlabeled

problems
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Scores

Precision

Definition
Fraction of data samples classified
as c+ which are actually c+

pr(φ) =
TP

TP + FP
=

TP
P̂

Definition Based on Probabilities

pr(φ) = p(C = c+|φ(x) = c+) = Eρ(x |φ(x)=c+)[δ(φ(x), c+)]
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Scores

Skew Data - Precision

X
1

X
2

c-

c+

-3 -2 -1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4

5

6

7

Prediction
c+ c− Total

A
ct

ua
l c+ 0 5 5

c− 7 993 1000
Total 7 998 1005

pr(φ) =
0

0 + 7
= 0

Very bad precision!!
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Scores

Positive Unlabeled Learning - Precision

? ?

?

?

?

?

?
?

?

?

?

?

?
?

?

?

?

X
1

X
2

c+

c
-

-1 0 1 2 3 4 5
-1

0

1

2

3

4

5

6

Precision is not a
good score for
positive-unlabeled
data samples
Not all the positive
samples are
labeled
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Scores

Precision & Recall Application Domains

Spam Filtering

Decide if an email is spam or not

Precision: Proportion of real spam in the spam-box
Recall: Proportion of total spam messages identified by the
system

Sentiment Analysis
Classify opinions about specific products given by users in
blogs, webs, forums, etc.

Precision: Proportion of opinions classified as positive
being actually positive
Recall: Proportion of positive opinions identified as positive
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Scores

Specificity

Definition
Fraction of negative class samples
correctly identified
Specificity = 1− FalsePositiveRate

sp(φ) =
TN

TN + FP
=

TN
N

Definition Based on Probabilities

sp(φ) = p(φ(x) = c−|C = c−) = Eρ(x |C=c−)[1− δ(φ(x), c−)]
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Scores

Skew Data - Specificity

X
1

X
2

c-

c+

-3 -2 -1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4

5

6

7

Prediction
c+ c− Total

A
ct

ua
l c+ 0 5 5

c− 7 993 1000
Total 7 998 1005

sp(φ) =
993

993 + 7
= 0,99
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Scores

Skew Data - Specificity

X
1

X
2

c-

c+

-3 -2 -1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

4

5

6

7

Prediction
c+ c− Total

A
ct

ua
l c+ 0 5 5

c− 0 1000 1000
Total 0 1005 1005

sp(φ) =
1000

1000 + 0
= 1,00
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Scores

Balanced Scores

Balanced accuracy rate

Bal . acc =
1
2

(
TP
P

+
TN
N

)
=

recall + specificity
2

Balanced error rate

Bal . ε =
1
2

(
FP
P

+
FN
N

)
Skew Data

Prediction
c+ c− Total

A
ct

ua
l c+ 0 5 5

c− 7 993 1000
Total 7 998 1005

Bal . acc = 1
2

(0
5 + 993

1000

)
≈ 0,5

Bal . ε = 1
2

(7
7 + 5

1000

)
≈ 0,5
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Scores

Balanced Scores

F − Score = (β2+1) Precision·Recall
β2(Precision+Recall)

F1 − Score = 2·Precision·Recall
Precision+Recall −→ Harmonic Mean

Harmonic Mean

Maximized with
balanced components
Bal. acc→ arithmetic
mean

S
co

re

-0.2 0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

TPR

TNR

Bal. acc

Harmonic Mean
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Scores

Classification Cost

All misclassifications cannot be equally considered

E.g. Medical Diagnosis Problem
Does not have the same cost as diagnosing a healthy patient
as ill rather than diagnosing an ill patient as healthy

Classification Model
May be of interest to minimize the expected cost instead the
classification error
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Scores

Dealing with Classification Cost

Loss Function
Associate an economic/utility/etc. cost to each classification.

Typical loss function in classification→ 0/1 Loss

We can use cost matrix to specify the associated cost:
Prediction
c+ c−

A
ct

ua
l c+ 0 1

c− 1 0
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Scores

Dealing with Classification Cost

Loss Function
Associate an economic/utility/etc. cost to each classification.

Typical loss function in classification→ 0/1 Loss

We can use cost matrix to specify the associated cost:
Prediction

c+ c−

A
ct

ua
l c+ CostTP CostFN

c− CostFP CostTN
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Scores

Dealing with Classification Cost

Loss Function
Associate an economic/utility/etc. cost to each classification.

Typical loss function in classification→ 0/1 Loss

We can use cost matrix to specify the associated cost:
Prediction

c+ c−

A
ct

ua
l c+ CostTP CostFN

c− CostFP CostTN

Usually not easy to give an associated cost
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Scores

Receiver Operating Characteristics (ROC)

ROC Space
Coordinate system used for visualizing classifiers performance
where TPR is plotted on the Y axis and FPR is plotted on the X
axis.

FPR

T
P

R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ1: kNN
φ2: Neural network
φ3: Naive Bayes
φ4: SVM
φ5: Linear regression
φ6: Decision tree
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Scores

Receiver Operating Characteristics (ROC)

ROC Space
Coordinate system used for visualizing classifiers performance
where TPR is plotted on the Y axis and FPR is plotted on the X
axis.

FPR

T
P

R

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ1: kNN
φ2: Neural network
φ3: Naive Bayes
φ4: SVM
φ5: Linear regression
φ6: Decision tree
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Scores

Receiver Operating Characteristics (ROC)

ROC Curve
For a probabilistic/fuzzy classifier, a ROC curve is a plot of the
TPR vs. FPR as its discrimination threshold is varied

FPR

T
P

R

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 p(c|x) T = 0,2 T = 0,5 T = 0,8 C
0,99 c+ c+ c+ c+

0,90 c+ c+ c+ c+

0,85 c+ c+ c+ c+

0,80 c+ c+ c+ c−

0,78 c+ c+ c− c+

0,70 c+ c+ c− c−

0,60 c+ c+ c− c+

0,45 c+ c− c− c−

0,40 c+ c− c− c−

0,30 c+ c− c− c−

0,20 c+ c− c− c+

0,15 c− c− c− c−

0,10 c− c− c− c−

0,05 c− c− c− c−
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Scores

Receiver Operating Characteristics (ROC)

ROC Curve
For a crisp classifier a ROC curve can be obtained by
interpolation from a single point

FPR

T
P

R

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 p(c|x) T = 0,2 T = 0,5 T = 0,8 C
0,99 c+ c+ c+ c+

0,90 c+ c+ c+ c+

0,85 c+ c+ c+ c+

0,80 c+ c+ c+ c−

0,78 c+ c+ c− c+

0,70 c+ c+ c− c−

0,60 c+ c+ c− c+

0,45 c+ c− c− c−

0,40 c+ c− c− c−

0,30 c+ c− c− c−

0,20 c+ c− c− c+

0,15 c− c− c− c−

0,10 c− c− c− c−

0,05 c− c− c− c−

- 51 -



logo

Classifier performance evaluation and comparison

Scores

Receiver Operating Characteristics (ROC)

ROC Curve
Insensitive to skew class distribution
Insensitive to misclassification cost

Dominance Relationship
A ROC curve A dominates another ROC curve B if A is always
above and to the left of B in the plot
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Scores

Receiver Operating Characteristics (ROC)

ROC Curve
Insensitive to skew class distribution
Insensitive to misclassification cost

Dominance Relationship
A ROC curve A dominates another ROC curve B if A is always
above and to the left of B in the plot
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Scores

Receiver Operating Characteristics (ROC)

FPR

T
P

R

A
B

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dominance
A dominates B
throughout all the range
of T
A has a better predictive
performance over any
condition of cost and
class distribution
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Scores

Receiver Operating Characteristics (ROC)

B

A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No-Dominance
The dominance
relationship may not be
so clear
No model is the best
under all possible
scenarios
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Scores

Receiver Operating Characteristics (ROC)

A

B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Area Under ROC Curve
Equivalent to Wilcoxon
test
If A dominates B:
AUC(A) ≥ AUC(B)

If A does not dominate B
AUC “cannot identify the
best classifier”
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Scores

Generalization to Multilabel-Class

Most of the presented scores are for binary classification
Generalization to multilabel is possible

E.g. One-vs-All approach

Prediction

c1 c2 c3 . . . cn Total

A
ct

ua
l

c1 TP1 FN12 FN13 . . . FN1n P1

c2 FN21 TP2 FN23 . . . FN2n P2

c3 FN31 FN32 TP3 . . . FN3n P3

. . . . . . . . . . . . . . . . . . . . .

cn FNn1 FNn2 FNn3 . . . TPn Pn

Total P̂1 P̂2 P̂3 . . . P̂n

c1 vs. All (score1)

TP

TN

FN

FP
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Generalization to Multilabel-Class

Most of the presented scores are for binary classification
Generalization to multilabel is possible

E.g. One-vs-All approach

Prediction
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. . . . . . . . . . . . . . . . . . . . .
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Scores

Generalization to Multilabel-Class

Most of the presented scores are for binary classification
Generalization to multilabel is possible

E.g. One-vs-All approach

Prediction
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c1 vs. All (score1)
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TN
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Scores

Generalization to Multilabel-Class

Most of the presented scores are for binary classification
Generalization to multilabel is possible

E.g. One-vs-All approach

Prediction

c1 c2 c3 . . . cn Total

A
ct

ua
l

c1 TP1 FN12 FN13 . . . FN1n P1

c2 FN21 TP2 FN23 . . . FN2n P2

c3 FN31 FN32 TP3 . . . FN3n P3

. . . . . . . . . . . . . . . . . . . . .

cn FNn1 FNn2 FNn3 . . . TPn Pn

Total P̂1 P̂2 P̂3 . . . P̂n

c1 vs. All (score1)

TP

TN

FN

FP
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Scores

Generalization to Multilabel-Class

Most of the presented scores are for binary classification
Generalization to multilabel is possible

E.g. One-vs-All approach

Prediction

c1 c2 c3 . . . cn Total

A
ct

ua
l

c1 TP1 FN12 FN13 . . . FN1n P1

c2 FN21 TP2 FN23 . . . FN2n P2

c3 FN31 FN32 TP3 . . . FN3n P3

. . . . . . . . . . . . . . . . . . . . .

cn FNn1 FNn2 FNn3 . . . TPn Pn

Total P̂1 P̂2 P̂3 . . . P̂n

c1 vs. All (score1)

TP

TN

FN

FP
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Scores

Generalization to Multilabel-Class

Most of the presented scores are for binary classification
Generalization to multilabel is possible

E.g. One-vs-All approach

Prediction

c1 c2 c3 . . . cn Total

A
ct

ua
l

c1 TP1 FN12 FN13 . . . FN1n P1

c2 FN21 TP2 FN23 . . . FN2n P2

c3 FN31 FN32 TP3 . . . FN3n P3

. . . . . . . . . . . . . . . . . . . . .

cn FNn1 FNn2 FNn3 . . . TPn Pn

Total P̂1 P̂2 P̂3 . . . P̂n

c1 vs. All (score1)

TP

TN

FN

FP

scoreTOT =
n∑

i=1

scorei · p(ci)
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Scores

Scores

The Use of a Specific Score Depends on:
Application domain
Characteristics of the problem
Characteristics of the data set
Our interest when solving the problem
etc.
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Estimation Methods

Outline of the Tutorial

1 Introduction

2 Scores

3 Estimation Methods

4 Hypothesis Testing
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Estimation Methods

Introduction

Estimation
Select a score to measure the quality
Calculate the true value of the score
Limited information is available

Physical Process
Classification 

Model

Quality Measures

Error
Recall
Precision
    ....    

Random
Variables

Finite Data set

Data set
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Estimation Methods

Introduction

Estimation
Select a score to measure the quality
Calculate the true value of the score
Limited information is available

Physical Process
Classification 

Model

Quality Measures
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Recall
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Estimation Methods

Introduction

Estimation
Select a score to measure the quality
Calculate the true value of the score
Limited information is available

Physical Process
Classification 

Model

Quality Measures

Error
Recall
Precision
    ....    

Random
Variables

Finite Data set

Data set
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Estimation Methods

Introduction

True Value - εN
Expected value of the score for a set of N data samples
sampled from ρ(C,X )
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Estimation Methods

Introduction

True Value - εN
Expected value of the score for a set of N data samples
sampled from ρ(C,X )

ρ(C,X ) unknown→ Point estimation of the score (ε̂)

- 70 -



logo

Classifier performance evaluation and comparison

Estimation Methods

Introduction

Bias
Difference between the estimation of the score and its true
value: Eρ(ε̂− εN)
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Estimation Methods

Introduction

Variance
Deviation of the estimated value from its expected value:
var(ε̂− εN)

- 72 -



logo

Classifier performance evaluation and comparison

Estimation Methods

Introduction

Bias and variance depend on the estimation method
Trade-off between bias and variance needed
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Estimation Methods

Introduction

Data set

Finite data set to estimate the score
Several choices depending on how this data set is dealt
with
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Estimation Methods

Resubstitution

Learning
Data set
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Estimation Methods

Resubstitution

TrainingData set
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Estimation Methods

Resubstitution

Classification Error Estimation
The simplest estimation method
Biased estimation εN
Smaller variance
Too optimistic (overfitting problem)
Bad estimator of the true classification error
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Estimation Methods

Hold-Out

Data set

Data set - Training

Data set
Data set - Test
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Estimation Methods

Hold-Out

Training
Data set

Data set - Training

Data set
Data set - Test
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Estimation Methods

Hold-Out

Test

Data set

Data set - Training

Data set
Data set - Test
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Estimation Methods

Hold-Out

Classification Error Estimation
Unbiased estimator of εN1

Biased estimator of εN
Large bias (pessimistic estimation of the true classification
error)
Bias related to N1 and N2

- 81 -



logo

Classifier performance evaluation and comparison

Estimation Methods

k -Fold Cross-Validation

Data set - Fold 1

Data set - Fold 2

Data set - Fold 3

Data set - Fold k

Data set
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Estimation Methods

k -Fold Cross-Validation

Training

Data set - Fold 1

Data set - Fold 2

Data set - Fold 3

Data set - Fold k

Data set
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Estimation Methods

k -Fold Cross-Validation

Test

Data set - Fold 1

Data set - Fold 2

Data set - Fold 3

Data set - Fold k

Data set
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Estimation Methods

k -Fold Cross-Validation

Data set - Fold 1

Data set - Fold 2

Data set - Fold 3

Data set - Fold k

Data set
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Estimation Methods

k -Fold Cross-Validation

Training

Data set - Fold 1

Data set - Fold 2

Data set - Fold 3

Data set - Fold k

Data set
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Estimation Methods

k -Fold Cross-Validation

Data set - Fold 1

Data set - Fold 2

Data set - Fold 3

Data set - Fold k

Data set
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Estimation Methods

k -Fold Cross-Validation

Data set - Fold 1

Data set - Fold 2

Data set - Fold 3

Data set - Fold k

Data set
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Estimation Methods

k -Fold Cross-Validation

Classification Error Estimation
Unbiased estimator of εN−N

k

Biased estimation of εN
Smaller bias than Hold-Out

Leaving-One-Out

Special case of k -fold Cross-Validation (k = N)
Quasi unbiased estimation for N
Improves the bias with respect to CV
Increases the variance→ more unstable
Higher computational cost
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Estimation Methods

Bootstrap

Data set

Bootstrap Data set - 

Bootstrap Data set - 

Bootstrap Data set - 

Bootstrap Data set - 
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Estimation Methods

Bootstrap

Bootstrap Data set - 

Bootstrap Data set - 

Bootstrap Data set - 

Bootstrap Data set - 

Data setData set
Data set
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Estimation Methods

Bootstrap

Bootstrap Data set - 

Bootstrap Data set - 

Bootstrap Data set - 

Bootstrap Data set - 

Data setData set
Data set
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Estimation Methods

Bootstrap

Bootstrap Data set - 

Bootstrap Data set - 

Bootstrap Data set - 

Bootstrap Data set - 

Data setData set
Data set
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Estimation Methods

Bootstrap

Classification Error Estimation
Biased estimation of the classification error
Variance improved because of resampling
Uses for testing part of the data used for learning
“Similar to resubstitution”
Problem of overfitting
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Estimation Methods

Leaving-One-Out Bootstrap

Mimics Cross-Validation
Each φi is tested on D/D∗i

Tries to Avoid the Overfitting Problem

Expected number of distinct samples on bootstrap data set
≈ 0,632N
Similar to repeated Hold-Out
Biased upwards:

Tends to be a pessimistic estimation of the score
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Estimation Methods

Improving the Estimation - Bias

Bias correction terms can be used for error estimation

Hold-Out/Cross-Validation
Several proposals
Improves bias estimation
Surprisingly not very extended

Bootstrap
Improves bias estimation
Well established methods
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Estimation Methods

Improving the Estimation - Bias

Corrected Hold-Out (ε̂+ho) - (Burman, 1989)

ε̂+ho = ε̂ho + ε̂res − ε̂ho−N

Where
ε̂ho = standard Hold-Out estimator
ε̂res = resubstitution error
ε̂ho−N = φ learned on Hold-Out learning set but tested on
D.
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Estimation Methods

Improving the Estimation - Bias

Corrected Hold-Out (ε̂+ho) - (Burman, 1989)

ε̂+ho = ε̂ho + ε̂res − ε̂ho−N

Improvement

Biasε̂ho ≈ Cons0
N2

N1·N

Biasε̂+ho
≈ Cons1

N2
N1·N2
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Estimation Methods

Improving the Estimation - Bias

Corrected Cross-Validation (ε̂+cv ) - (Burman, 1989)

ε̂+cv = ε̂cv + ε̂res − ε̂cv−N

Improvement

Biasε̂cv ≈ Cons0
1

(k−1)·N

Biasε̂+cv
≈ Cons1

1
(k−1)·N2
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Estimation Methods

Improving the Estimation - Bias

0.632 Bootstrap (ε̂.632
boot )

ε̂.632
boot = 0.368ε̂res + 0.632ε̂loo−boot

Improvement
Tries to balance optimism (resubstitution) and pessimism
(loo-bootstrap)
Works well with “light-fitting” classifiers
With overfitting classifiers ε̂.632

boot is still too optimistic
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Estimation Methods

Improving the Estimation - Bias

0.632+ Bootstrap (ε̂.632+
boot ) - (Efron & Tibshirani, 1997)

Correct bias when there is great amount of overfitting
Based on the non-information error rate (γ):

γ̂ =
N∑

i=1

N∑
j=1

δ(ci , φx (x j))/N2

Uses the relative overfitting to correct the bias:

R̂ =
ε̂loo−boot − ε̂res

γ̂ − ε̂res
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Estimation Methods

Improving the Estimation - Bias

0.632+ Bootstrap (ε̂.632+
boot ) - (Efron & Tibshirani, 1997)

ε̂.632
boot = (1− ŵ)ε̂res + ŵ ε̂loo−boot

ŵ = 0.632
1−0.638R̂

γ̂ =
∑N

i=1
∑N

j=1 δ(ci , φx (x j)/N2

R̂ =
ε̂loo−boot−ε̂res

γ̂−ε̂res
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Estimation Methods

Improving the Estimation - Variance

Stratification
Keeps the proportion of each class in the train/test data

Hold-Out: Stratified splitting
Cross-Validation: Stratified splitting
Bootstrap: Stratified sampling

May improve the variance of the estimation
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Estimation Methods

Improving the Estimation - Variance

Repeated Methods
Applicable to Hold-Out and Cross-Validation
Bootstrap already includes sampling

Repeated Hold-Out/Cross-Validation
Repeat estimation process t-times
Simple average over results

Classification Error Estimation
Same bias as standard estimation methods
Reduces the variance with respect
Hold-Out/Cross-Validation
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Estimation Methods

Estimation Methods

Which estimation method is better?

May Depend on Many Aspects
The size of the data set
The classification paradigm used
The stability of the learning algorithm
The characteristics of the classification problem
The bias/variance/computational cost trade-off
. . .
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Estimation Methods

Estimation Methods

Which estimation method is better?

Large Data Sets
Hold-out may be a good choice

Computationally not so expensive
Larger bias but depends on the data set size

Smaller Data Sets
Repeated Cross-Validation
Bootstrap 0.632
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Estimation Methods

Estimation Methods

Which estimation method is better?

Small Data Sets
Bootstrap and repeated Cross-Validation may not be
informative
Permutation test (Ojala & Garriga, 2010):

Can be used to ensure the validity of the estimation
Confidence intervals (Isaksson et al., 2008):

May provide more reliable information about the estimation
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Hypothesis Testing

Outline of the Tutorial

1 Introduction

2 Scores

3 Estimation Methods

4 Hypothesis Testing
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Hypothesis Testing

Motivation

Basic Concepts
Hypothesis testing form the basis of scientific reasoning in
experimental sciences
They are used to set scientific statements
A hypothesis Ho called null hypothesis is tested against
another hypothesis H1 called alternative
The two hypotheses are not at the same level: reject Ho
does not mean acceptance of H1

The objective is to know when the differences in H0 are
due to randomness or not
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Hypothesis Testing

Hypothesis Testing

Possible Outcomes of a Test
Given a sample, a decision is taken about the null
hypothesis (H0)
The decision is taken under uncertainty

H0 TRUE H0 FALSE
Decision: ACCEPT

√
Type II error (β)

Decision: REJECT Type I error (α)
√
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Hypothesis Testing

Hypothesis Testing: An Example

A Simple Hypothesis Test
A natural process is given in nature that follows a Gaussian
distribution N (µ, σ2)

We have a sample of this process {x1, . . . , xn} and a
decision must be taken about the following hypotheses:{

H0 : µ = 60
H1 : µ = 50

A statistic (function) of the sample is used to take the
decision. In our example X = 1

n
∑n

i=1 xi
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Hypothesis Testing

Hypothesis Testing: An Example

Accept and Reject Regions

The possible values of the statistic are divided in accept
and reject regions

A.R. = {(x1, . . . , xn)|X > 55}

R.R. = {(x1, . . . , xn)|X ≤ 55}

Assuming a probability distribution on the statistic X (it
depends on the distribution of {x1, . . . , xn}) the probability
of each error type can be calculated:

α = PH0
(X ∈ R.R.) = PH0

(X ≤ 55)

β = PH1
(X ∈ A.R.) = PH1

(X > 55)
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Hypothesis Testing

Hypothesis Testing: An Example

Accept and Reject Regions

The A.R. and R.R. can be modified in order to have a
particular value of α:

0,1 = α = PH0(X ∈ R.R.) = PH0
(X ≤ 51)

0,05 = α = PH0(X ∈ R.R.) = PH0
(X ≤ 50,3)

p-value. Given a sample and the specific value of the test
statistic x for the sample:

p-value = PH0(X ≤ x)
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Hypothesis Testing

Hypothesis Testing: Remarks

Power: (1− β)

Depending on the hypotheses the type II error (β) can not
be calculated: {

H0 : µ = 60
H1 : µ 6= 60

In this case we do not know the value of µ for H1 so we can
not calculate the power (1− β)

A good hypothesis test: given an α the test maximises the
power (1− β)

Parametric test vs non-parametric test

- 114 -



logo

Classifier performance evaluation and comparison

Hypothesis Testing

Hypothesis Testing in Supervised Classification

Scenarios
Two classifiers (algorithms) vs More than two
One dataset vs More than one dataset
Score
Score estimation method known vs unknown
The classifiers are trained and tested in the same datasets
.....
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Hypothesis Testing

Testing Two Algorithms in a Dataset

The General Approach


H0 : classifier ψ has the same score value as

classifier ψ′ in p(x, c)

H1 : they have different values
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Hypothesis Testing

Testing Two Algorithms in a Dataset

The General Approach


H0 : classifier ψ has the same score value as

classifier ψ′ in p(x, c)

H1 : they have different values


H0 : algorithm ψ has the same average score value as

algorithm ψ′ in p(x, c)

H1 : they have different values
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Hypothesis Testing

Testing Two Algorithms in a Dataset

An Ideal Context: We Can Sample p(x, c)

1 Sample i.i.d. 2n datasets from p(x, c)

2 Learn 2n classifiers ψ1
i , ψ2

i for i = 1, . . . ,n

3 For each classifier obtain enough i.i.d. samples
{(x1, c1), . . . , (xN , cN)} from p(x, c)

4 For each data set calculate the error of each algorithm in the test
set

ε1i =
1
N

N∑
j=1

error1
i (xj ) ε2i =

1
N

N∑
j=1

error2
i (xj )

5 Calculate the average values over the n training datasets:

ε1 =
1
n

n∑
i=1

ε1i ε2 =
1
n

n∑
i=1

ε2i
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Hypothesis Testing

Testing Two Algorithms in a Dataset

An Ideal Context: We Can Sample p(x, c)

Our test rejects the null hypothesis if |ε1 − ε2| (the statistic)
is big
Fortunately, by the central limit theorem:

εi  N (score(ψi), si) i = 1,2

Therefore, under the null hypothesis:

Ẑ =
ε1 − ε2√

s2
1+s2

2
n

 N (0,1)

... and finally we reject H0 when |Ẑ | > z1−α/2
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Hypothesis Testing

Testing Two Algorithms in a Dataset

Properties of Our Ideal Framework
Training datasets are independent
Testing datasets are independent

The Sad Reality

We can not get i.i.d. training samples from p(x, c)

We can not get i.i.d. testing samples from p(x, c)

We have only one sample from p(x, c)
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Hypothesis Testing

Testing Two Algorithms in a Dataset

McNemar Test (non-parametric)

Compare two classifiers in a dataset after a Hold-Out process

It is a paired non-parametric test

ψ2 error ψ2 ok
ψ1 error n00 n01
ψ1 ok n10 n11

Under H0 we have n10 ≈ n01 and the statistic

(|n01 − n10| − 1)2

n01 + n10

follows a χ2 distribution with 1 degree of freedom

When n01 + n10 is small (<25) the binomial dist. can be used- 121 -
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Hypothesis Testing

Testing Two Algorithms in a Dataset

Tests Based on Resampling: Resampled t-test (parametric)

The dataset is randomly divided n times in training and test

Let p̂i be the difference between the performance of both
algorithms in run i and p the average. When it is assumed that p̂i
are Gaussian and independent, under the null

t =
p
√

n√∑n
i=1(p̂i−p)2

n−1

follows a t student distribution with n − 1 degree of freedom

Caution:

p̂i are not Gaussian as p̂1
i and p̂2

i are not independent
p̂i are not independent (overlap in training and testing)
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Hypothesis Testing

Testing Two Algorithms in a Dataset

Resampled t-test Improved (Nadeau & Bengio, 2003)
The variance in this case is too optimistic
Two alternatives

Corrected resampled t :(
1
n

+
n2

n1

)
σ2

Conservative Z (overestimation of the variance)
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Hypothesis Testing

Testing Two Algorithms in a Dataset

t-test for k-fold Cross-validation
It is similar to t-test for resampling
In this case the testing datasets are independent
The training datasets are still dependent
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Hypothesis Testing

Testing Two Algorithms in a Dataset

5x2 fold Cross-Validation (Dietterich 1998, Alpaydin 1999)
Each Cross-Validation process has independent training
and testing datasets
The following statistic:∑5

i=1
∑2

j=1(p(j)
i )2

2
∑5

i=1 s2
i

follows a F distribution with 10 and 5 degrees of freedom
under the null hypothesis
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Hypothesis Testing

Testing Two Algorithms in Several Datasets

Initial Approaches
Averaging Over Datasets
Paired t-test

c i = c i
1 − c i

2 and d = 1
N

∑N
i=1 c i then d/σd follows a t

distribution with N − 1 degrees of freedom

Problems
Commensurability
Outlier susceptibility
(t-test) Gaussian assumption
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Hypothesis Testing

Testing Two Algorithms in Several Datasets

Wilcoxon Signed-Ranks Test

It is a non-parametric test that works as follows:
1 Rank the module of the performance differences between

both algorithms
2 Calculate the sum of the ranks R+ and R− where the first

(resp. the second) algorithm outperforms the other
3 Calculate T = min(R+,R−)

For N ≤ 25 there are tables with critical values
For N > 25

z =
T − 1

4N(N + 1)√
1

24N(N + 1)(2N + 1)
 N (0,1)
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Hypothesis Testing

Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598
Dataset2 0.599 0.591
Dataset3 0.954 0.971
Dataset4 0.628 0.661
Dataset5 0.882 0.888
Dataset6 0.936 0.931
Dataset7 0.661 0.668
Dataset8 0.583 0.583
Dataset9 0.775 0.838
Dataset10 1.000 1.000
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Hypothesis Testing

Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165
Dataset2 0.599 0.591
Dataset3 0.954 0.971
Dataset4 0.628 0.661
Dataset5 0.882 0.888
Dataset6 0.936 0.931
Dataset7 0.661 0.668
Dataset8 0.583 0.583
Dataset9 0.775 0.838
Dataset10 1.000 1.000
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Hypothesis Testing

Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165
Dataset2 0.599 0.591 -0.008
Dataset3 0.954 0.971
Dataset4 0.628 0.661
Dataset5 0.882 0.888
Dataset6 0.936 0.931
Dataset7 0.661 0.668
Dataset8 0.583 0.583
Dataset9 0.775 0.838
Dataset10 1.000 1.000
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Hypothesis Testing

Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165
Dataset2 0.599 0.591 -0.008
Dataset3 0.954 0.971 +0.017
Dataset4 0.628 0.661 +0.033
Dataset5 0.882 0.888 +0.006
Dataset6 0.936 0.931 -0.005
Dataset7 0.661 0.668 +0.007
Dataset8 0.583 0.583 0.000
Dataset9 0.775 0.838 +0.063
Dataset10 1.000 1.000 0.000
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Hypothesis Testing

Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165
Dataset2 0.599 0.591 -0.008
Dataset3 0.954 0.971 +0.017
Dataset4 0.628 0.661 +0.033
Dataset5 0.882 0.888 +0.006
Dataset6 0.936 0.931 -0.005
Dataset7 0.661 0.668 +0.007
Dataset8 0.583 0.583 0.000
Dataset9 0.775 0.838 +0.063
Dataset10 1.000 1.000 0.000
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Hypothesis Testing

Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165
Dataset2 0.599 0.591 -0.008
Dataset3 0.954 0.971 +0.017
Dataset4 0.628 0.661 +0.033
Dataset5 0.882 0.888 +0.006
Dataset6 0.936 0.931 -0.005
Dataset7 0.661 0.668 +0.007
Dataset8 0.583 0.583 0.000 1.5
Dataset9 0.775 0.838 +0.063
Dataset10 1.000 1.000 0.000 1.5
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Hypothesis Testing

Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165
Dataset2 0.599 0.591 -0.008
Dataset3 0.954 0.971 +0.017
Dataset4 0.628 0.661 +0.033
Dataset5 0.882 0.888 +0.006
Dataset6 0.936 0.931 -0.005
Dataset7 0.661 0.668 +0.007
Dataset8 0.583 0.583 0.000 1.5
Dataset9 0.775 0.838 +0.063
Dataset10 1.000 1.000 0.000 1.5
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Hypothesis Testing

Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165
Dataset2 0.599 0.591 -0.008
Dataset3 0.954 0.971 +0.017
Dataset4 0.628 0.661 +0.033
Dataset5 0.882 0.888 +0.006
Dataset6 0.936 0.931 -0.005 3
Dataset7 0.661 0.668 +0.007
Dataset8 0.583 0.583 0.000 1.5
Dataset9 0.775 0.838 +0.063
Dataset10 1.000 1.000 0.000 1.5
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Hypothesis Testing

Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165 10
Dataset2 0.599 0.591 -0.008 6
Dataset3 0.954 0.971 +0.017 7
Dataset4 0.628 0.661 +0.033 8
Dataset5 0.882 0.888 +0.006 4
Dataset6 0.936 0.931 -0.005 3
Dataset7 0.661 0.668 +0.007 5
Dataset8 0.583 0.583 0.000 1.5
Dataset9 0.775 0.838 +0.063 9
Dataset10 1.000 1.000 0.000 1.5
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Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165 10
Dataset2 0.599 0.591 -0.008 6
Dataset3 0.954 0.971 +0.017 7
Dataset4 0.628 0.661 +0.033 8
Dataset5 0.882 0.888 +0.006 4
Dataset6 0.936 0.931 -0.005 3
Dataset7 0.661 0.668 +0.007 5
Dataset8 0.583 0.583 0.000 1.5
Dataset9 0.775 0.838 +0.063 9
Dataset10 1.000 1.000 0.000 1.5

R+ =
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Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165 10
Dataset2 0.599 0.591 -0.008 6
Dataset3 0.954 0.971 +0.017 7
Dataset4 0.628 0.661 +0.033 8
Dataset5 0.882 0.888 +0.006 4
Dataset6 0.936 0.931 -0.005 3
Dataset7 0.661 0.668 +0.007 5
Dataset8 0.583 0.583 0.000 1.5
Dataset9 0.775 0.838 +0.063 9
Dataset10 1.000 1.000 0.000 1.5

R+ = 7 + 8 + 4 + 5 + 9 + 1/2(1,5 + 1,5)
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Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165 10
Dataset2 0.599 0.591 -0.008 6
Dataset3 0.954 0.971 +0.017 7
Dataset4 0.628 0.661 +0.033 8
Dataset5 0.882 0.888 +0.006 4
Dataset6 0.936 0.931 -0.005 3
Dataset7 0.661 0.668 +0.007 5
Dataset8 0.583 0.583 0.000 1.5
Dataset9 0.775 0.838 +0.063 9
Dataset10 1.000 1.000 0.000 1.5

R+ = 34.5
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Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165 10
Dataset2 0.599 0.591 -0.008 6
Dataset3 0.954 0.971 +0.017 7
Dataset4 0.628 0.661 +0.033 8
Dataset5 0.882 0.888 +0.006 4
Dataset6 0.936 0.931 -0.005 3
Dataset7 0.661 0.668 +0.007 5
Dataset8 0.583 0.583 0.000 1.5
Dataset9 0.775 0.838 +0.063 9
Dataset10 1.000 1.000 0.000 1.5

R+ = 34.5 R− = 10 + 6 + 3 + 1/2(1,5 + 1,5)
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Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165 10
Dataset2 0.599 0.591 -0.008 6
Dataset3 0.954 0.971 +0.017 7
Dataset4 0.628 0.661 +0.033 8
Dataset5 0.882 0.888 +0.006 4
Dataset6 0.936 0.931 -0.005 3
Dataset7 0.661 0.668 +0.007 5
Dataset8 0.583 0.583 0.000 1.5
Dataset9 0.775 0.838 +0.063 9
Dataset10 1.000 1.000 0.000 1.5

R+ = 34.5 R− = 20.5
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Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165 10
Dataset2 0.599 0.591 -0.008 6
Dataset3 0.954 0.971 +0.017 7
Dataset4 0.628 0.661 +0.033 8
Dataset5 0.882 0.888 +0.006 4
Dataset6 0.936 0.931 -0.005 3
Dataset7 0.661 0.668 +0.007 5
Dataset8 0.583 0.583 0.000 1.5
Dataset9 0.775 0.838 +0.063 9
Dataset10 1.000 1.000 0.000 1.5

R+ = 34.5 R− = 20.5 T = min(R+,R−)
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Wilcoxon Signed-Ranks Test: Example

ψ1 ψ2 diff rank
Dataset1 0.763 0.598 -0.165 10
Dataset2 0.599 0.591 -0.008 6
Dataset3 0.954 0.971 +0.017 7
Dataset4 0.628 0.661 +0.033 8
Dataset5 0.882 0.888 +0.006 4
Dataset6 0.936 0.931 -0.005 3
Dataset7 0.661 0.668 +0.007 5
Dataset8 0.583 0.583 0.000 1.5
Dataset9 0.775 0.838 +0.063 9
Dataset10 1.000 1.000 0.000 1.5

R+ = 34.5 R− = 20.5 T = min(R+,R−) = 20.5
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Testing Two Algorithms in Several Datasets

Wilcoxon Signed-Ranks Test

It also suffers from commensurability but only qualitatively
When the assumptions of the t test are met, Wilcoxon is
less powerful than t test

- 144 -



logo

Classifier performance evaluation and comparison

Hypothesis Testing

Testing Two Algorithms in Several Datasets

Signed Test

It is a non-parametric test that counts the number of
losses, ties and wins
Under the null the number of wins follows a binomial
distribution B(1/2,N)

For large values of N the number of wins follows
N (N/2,

√
N/2) under the null

This test does not make any assumptions
It is weaker than Wilcoxon
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Dataset (Demšar, 2006)

ψ1 ψ2 ψ3 ψ4

D1 0.84 0.79 0.89 0.43
D2 0.57 0.78 0.78 0.93
D3 0.62 0.87 0.88 0.71
D4 0.95 0.55 0.49 0.72
D5 0.84 0.67 0.89 0.89
D6 0.51 0.63 0.98 0.55
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Multiple Hypothesis Testing

Testing all possible pairs of hypotheses µψi = µψj ∀ i , j .
Multiple hypothesis testing
Testing the hypothesis µψ1 = µψ2 = . . . = µψk
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Multiple Hypothesis Testing

Testing all possible pairs of hypotheses µψi = µψj ∀ i , j .
Multiple hypothesis testing
Testing the hypothesis µψ1 = µψ2 = . . . = µψk
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Multiple Hypothesis Testing

Testing all possible pairs of hypotheses µψi = µψj ∀ i , j .
Multiple hypothesis testing
Testing the hypothesis µψ1 = µψ2 = . . . = µψk

ANOVA vs Friedman
Repeated measures ANOVA: Assumes Gaussianity and
sphericity
Friedman: Non-parametric test
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Freidman Test
1 Rank the algorithms for each dataset separately (1-best).

In case of ties assigned average ranks
2 Calculate the average rank Rj of each algorithm ψj

3 The following statistic:

χ2
F =

12N
k(k + 1)

∑
j

R2
j −

k(k + 1)2

4


follows a χ2 with k − 1 degrees of freedom (N>10, k>5)
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Testing Several Algorithms in Several Datasets

Friedman Test: Example

ψ1 ψ2 ψ3 ψ4

D1 0.84 (2) 0.79 (3) 0.89 (1) 0.43 (4)
D2 0.57 (4) 0.78 (2.5) 0.78 (2.5) 0.93 (1)
D3 0.62 (4) 0.87 (2) 0.88 (1) 0.71 (3)
D4 0.95 (1) 0.55 (3) 0.49 (4) 0.72 (2)
D5 0.84 (3) 0.67 (4) 0.89 (1.5) 0.89 (1.5)
D6 0.51 (4) 0.63 (2) 0.98 (1) 0.55 (3)

avr. rank 3 2.75 1.83 2.41
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Testing Several Algorithms in Several Datasets

Friedman Test: Example

ψ1 ψ2 ψ3 ψ4

D1 0.84 (2) 0.79 (3) 0.89 (1) 0.43 (4)
D2 0.57 (4) 0.78 (2.5) 0.78 (2.5) 0.93 (1)
D3 0.62 (4) 0.87 (2) 0.88 (1) 0.71 (3)
D4 0.95 (1) 0.55 (3) 0.49 (4) 0.72 (2)
D5 0.84 (3) 0.67 (4) 0.89 (1.5) 0.89 (1.5)
D6 0.51 (4) 0.63 (2) 0.98 (1) 0.55 (3)

avr. rank 3 2.75 1.83 2.41

χ2
F =

12N
k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 =
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Testing Several Algorithms in Several Datasets

Friedman Test: Example

ψ1 ψ2 ψ3 ψ4

D1 0.84 (2) 0.79 (3) 0.89 (1) 0.43 (4)
D2 0.57 (4) 0.78 (2.5) 0.78 (2.5) 0.93 (1)
D3 0.62 (4) 0.87 (2) 0.88 (1) 0.71 (3)
D4 0.95 (1) 0.55 (3) 0.49 (4) 0.72 (2)
D5 0.84 (3) 0.67 (4) 0.89 (1.5) 0.89 (1.5)
D6 0.51 (4) 0.63 (2) 0.98 (1) 0.55 (3)

avr. rank 3 2.75 1.83 2.41

χ2
F =

12N
k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 = 2,5902
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Iman & Davenport, 1980
An improvement of Friedman test:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

follows a F-distribution with k − 1 and (k − 1)(N − 1)
degrees of freedom
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Testing Several Algorithms in Several Datasets

Post-hoc Tests
Decision on the null hypothesis
In case of rejection use of post-hoc tests to:

1 Compare all pairs
2 Compare all classifiers with a control
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Multiple Hypothesis Testing

Several related hypothesis simultaneously H1, . . . ,Hn

H0 TRUE H0 FALSE
Decision: ACCEPT

√
Type II error (β)

Decision: REJECT Type I error (α)
√
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Multiple Hypothesis Testing

Several related hypothesis simultaneously H1, . . . ,Hn

H0 TRUE H0 FALSE
Decision: ACCEPT

√
Type II error (β)

Decision: REJECT Type I error (α)
√
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Multiple Hypothesis Testing

Several related hypothesis simultaneously H1, . . . ,Hn

H0 TRUE H0 FALSE
Decision: ACCEPT

√
Type II error (β)

Decision: REJECT Type I error (α)
√

Family-wise error: Probability of rejecting at least one
hypothesis assuming that ALL ARE TRUE
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Multiple Hypothesis Testing

Several related hypothesis simultaneously H1, . . . ,Hn

H0 TRUE H0 FALSE
Decision: ACCEPT

√
Type II error (β)

Decision: REJECT Type I error (α)
√

Family-wise error: Probability of rejecting at least one
hypothesis assuming that ALL ARE TRUE
False discovery rate
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Multiple Hypothesis Testing

Several related hypothesis simultaneously H1, . . . ,Hn

H0 TRUE H0 FALSE
Decision: ACCEPT

√
Type II error (β)

Decision: REJECT Type I error (α)
√

Family-wise error: Probability of rejecting at least one
hypothesis assuming that ALL ARE TRUE
False discovery rate
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Testing Several Algorithms in Several Datasets

Designing Multiple Hypothesis Test

Controlling family-wise error
If each test Hi has a type I error α then the family-wise
error (FWE) in n tests is:

P(accept H1 ∩ accept H2 ∩ . . . ∩ accept Hn)

= P(accept H1)× P(accept H2)× . . .× P(accept Hn)

= (1− α)n

and therefore

FWE = 1− (1− α)n ≈ 1− (1− αn) = αn

In order to have FWE α we need to modify the threshold at
each test - 161 -
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Comparing with a Control

The statistic for comparing ψi and ψj is:

z =
(Ri − Rj)√

k(k+1)
6N

 N (0,1)

Bonferroni-Dunn Test
It is a one-step method
Modify α by taking into account the number of
comparisons:

α

k − 1
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Comparing with a Control
Methods based on ordered p-values
The p-values are ordered p1 ≤ p2 ≤ . . . ≤ pk−1

Holm Method
It is a step-down procedure
Starting from p1 check the first i = 1, . . . , k − 1 such that
pi > α/(k − i)
The hypothesis H1, . . . ,Hi−1 are rejected. The rest of
hypotheses are kept
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Friedman Test: Example (α = 0.05)

ψ1 ψ2 ψ3 ψ4

D1 0.84 (2) 0.79 (3) 0.89 (1) 0.43 (4)
D2 0.57 (4) 0.78 (2.5) 0.78 (2.5) 0.93 (1)
D3 0.62 (4) 0.87 (2) 0.88 (1) 0.71 (3)
D4 0.95 (1) 0.55 (3) 0.49 (4) 0.72 (2)
D5 0.84 (3) 0.67 (4) 0.89 (1.5) 0.89 (1.5)
D6 0.51 (4) 0.63 (2) 0.98 (1) 0.55 (3)

avr. rank 3 2.75 1.83 2.41
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Friedman Test: Example (α = 0.05)

ψ1 ψ2 ψ3 ψ4

D1 0.84 (2) 0.79 (3) 0.89 (1) 0.43 (4)
D2 0.57 (4) 0.78 (2.5) 0.78 (2.5) 0.93 (1)
D3 0.62 (4) 0.87 (2) 0.88 (1) 0.71 (3)
D4 0.95 (1) 0.55 (3) 0.49 (4) 0.72 (2)
D5 0.84 (3) 0.67 (4) 0.89 (1.5) 0.89 (1.5)
D6 0.51 (4) 0.63 (2) 0.98 (1) 0.55 (3)

avr. rank 3 2.75 1.83 2.41

z =
(Ri − Rj)√

k(k+1)
6N
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Testing Several Algorithms in Several Datasets

Friedman Test: Example (α = 0.05)

z =
(Ri − Rj)√

k(k+1)
6N

z
z12 0.3354
z13 1.5697
z14 0.7915
z23 1.2343
z24 0.4561
z34 -0.7781
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Friedman Test: Example (α = 0.05)

z p-value
z12 0.3354 0.259
z13 2.1569 0.031
z14 0.7915 0.125
z23 1.9843 0.042
z24 0.4561 0.221
z34 -2.7781 0.009
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Friedman Test: Example (α = 0.05)

z p-value Bonferroni (α/6)
z12 0.3354 0.259 0.008
z13 2.1569 0.031 0.008
z14 0.7915 0.125 0.008
z23 1.9843 0.042 0.008
z24 0.4561 0.221 0.008
z34 -2.7781 0.007 0.008
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Friedman Test: Example (α = 0.05)

z p-value Bonferroni (α/6)
z12 0.3354 0.259 0.008
z13 2.1569 0.031 0.008
z14 0.7915 0.125 0.008
z23 1.9843 0.042 0.008
z24 0.4561 0.221 0.008
z34 -2.7781 0.007 0.008
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Friedman Test: Example (α = 0.05)

z p-value Bonferroni (α/6) Holm (α/(7− i))
z12 0.3354 0.259 0.008
z13 2.1569 0.031 0.008
z14 0.7915 0.125 0.008
z23 1.9843 0.009 0.008
z24 0.4561 0.221 0.008
z34 -2.7781 0.007 0.008
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Friedman Test: Example (α = 0.05)

z p-value Bonferroni (α/6) Holm (α/(7− i))
z12 0.3354 0.259 0.008
z13 2.1569 0.031 0.008
z14 0.7915 0.125 0.008
z23 1.9843 0.009 0.008
z24 0.4561 0.221 0.008
z34 -2.7781 0.007 0.008 0.008
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Friedman Test: Example (α = 0.05)

z p-value Bonferroni (α/6) Holm (α/(7− i))
z12 0.3354 0.259 0.008
z13 2.1569 0.031 0.008
z14 0.7915 0.125 0.008
z23 1.9843 0.009 0.008 0.010
z24 0.4561 0.221 0.008
z34 -2.7781 0.007 0.008 0.008
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Friedman Test: Example (α = 0.05)

z p-value Bonferroni (α/6) Holm (α/(7− i))
z12 0.3354 0.259 0.008
z13 2.1569 0.031 0.008 0.012
z14 0.7915 0.125 0.008
z23 1.9843 0.009 0.008 0.010
z24 0.4561 0.221 0.008
z34 -2.7781 0.007 0.008 0.008
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Friedman Test: Example (α = 0.05)

z p-value Bonferroni (α/6) Holm (α/(7− i))
z12 0.3354 0.259 0.008
z13 2.1569 0.031 0.008 0.012
z14 0.7915 0.125 0.008
z23 1.9843 0.009 0.008 0.010
z24 0.4561 0.221 0.008
z34 -2.7781 0.007 0.008 0.008
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Hochberg Method
It is a step-up procedure
Starting with pk−1 check the first i = k − 1, . . . ,1 such that
pi < α/(k − i)
The hypothesis H1, . . . ,Hi−1 are rejected. The rest of
hypotheses are kept

Hommel Method
Find the largest j such that pn−j+k > kα/j for all
k = 1, . . . , j
Reject all hypotheses i such that pi ≤ α/j
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Comments on the Tests
Holm, Hochberg and Hommel tests are more powerful than
Bonferroni
Hochberg and Hommel are based on Simes conjecture
and can have a higher than α FWE
In practice Holm obtains very similar results to the other
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All Pairwise Comparisons
Differences with Comparing with a Control
The all pairwise hypotheses are logically related: not all
combinations of true and false hypotheses are possible

C1 better than C2 and C2 better than C3

and C1 equal to C3
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Shaffer Static Procedure
It is a modification of Homl’s procedure
Starting from p1 check the first i = 1, . . . , k(k − 1)/2 such
that pi > α/ti
The hypothesis H1, . . . ,Hi−1 are rejected. The rest of
hypotheses are kept
ti is the maximum number of hypotheses that can be true
given that (i − 1) are false
It is a static procedure: ti is determined given the
hypotheses independently of the p-values
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Shaffer Dynamic Procedure
It is similar to the previous procedure but ti is changed by t∗i
t∗i considers the maximum number of hypotheses that can
be true given that the previous (i − 1) hypotheses are false
It is a dynamic procedure as t∗i depends on the hypotheses
already rejected
It is more powerful than the Shaffer Static Procedure
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Bregmann & Hommel

More powerful alternative than Shaffer Dynamic Procedure
Difficult implementation

Remarks
Adjusted p-values
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Conclusions

Two Classifiers in a Dataset
The complexity of the estimation of the scores makes it
difficult to carry out good statistical testing

Two Classifiers in Several Datasets
Wilcoxon Signed-Ranks Test is a good choice
In case of many datasets and to avoid the
commensurability problem the Signed test could be used
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Conclusions

Several Classifiers in Several Datasets
Friedman or Iman & Davenport are required
Post-hoc test more powerful than Bonferroni:

Comparison with a control: Holm method
All-to-all comparison: Shaffer Static method

An Idea for Future Work
To consider the variability of the score in each classifier
and dataset
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