Classifier performance evaluation and comparison

Jose A. Lozano, Guzmán Santafé, Iñaki Inza

Intelligent Systems Group The University of the Basque Country

International Conference on Machine Learning and Applications (ICMLA 2010) December 12-14, 2010

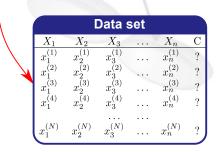
Outline of the Tutorial

• • • • • • • • • • • •

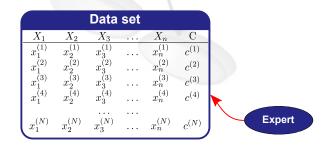
Outline of the Tutorial

ヘロマ ヘロマ ヘビマ・

Classification Problem



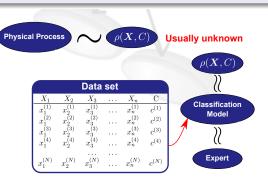
Classification Problem



Supervised Classification

Learning from Experience

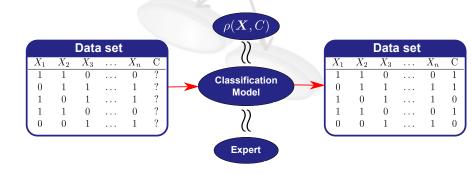
- "Automate the work of the expert"
- Tries to model \(\rho(\mathbf{X}, \mathbf{C})\)



Supervised Classification

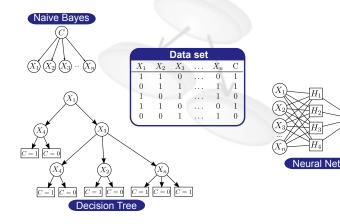
Classification Model

Classifier labels new data (unknown class value)



Motivation for Honest Evaluation

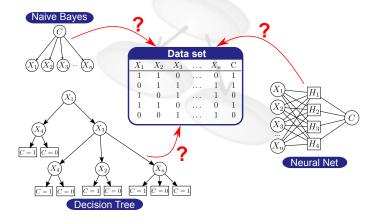
Many classification paradigms



C

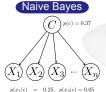
Motivation for Honest Evaluation

• Which is the best paradigm for a classification problem?



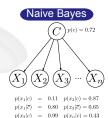
Motivation for Honest Evaluation

Many parameter configurations



 $\begin{array}{rcl} p(x_1|\vec{c}) &=& 0.60 & p(x_3|\vec{c}) = 0.60 \\ p(x_2|c) &=& 0.20 & p(x_n|c) = 0.80 \\ p(x_2|\vec{c}) &=& 0.70 & p(x_n|\vec{c}) = 0.21 \end{array}$

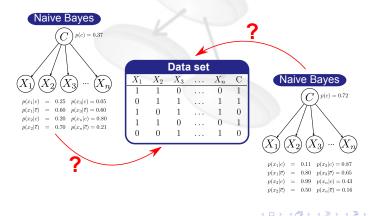
Data set									
X_1	X_2	X_3		X_n	С				
1	1	0		0	1				
0	1	1		1	1				
1	0	1		1	0				
1	1	0		0	1				
0	0	1		1	0				



 $p(x_2|\vec{c}) = 0.50 \quad p(x_n|\vec{c}) = 0.16$

Motivation for Honest Evaluation

 Which is the best parameter configuration for a classification problem?



Motivation for Honest Evaluation

Honest Evaluation

- Need to know the goodness of a classifier
- Methodology to compare classifiers
- Assess the validity of evaluation/comparison

Steps for Honest Evaluation

- Scores: quality measures
- Estimation methods: estimate value of a score
- Statistical tests: comparison among different solutions

Outline of the Tutorial

Motivation

• How to compare classification models?

Score

Function that provides a quality measure for a classifier when solving a classification problem

• • • • • • • • • • • •

Motivation

• How to compare classification models?

Score

Function that provides a quality measure for a classifier when solving a classification problem

<ロ> <同> <同> < 同> < 同>

Motivation

• How to compare classification models?

Score

Function that provides a quality measure for a classifier when solving a classification problem

Motivation

What Does Best Quality Mean?

- What are we interested in?
- What do we want to optimize?
- Characteristics of the problem
- Characteristics of the data set

Different kind of scores

• • • • • • • • • • • • •

Scores

Based on Confusion Matrix

- Accuracy/Classification error
- Recall
- Specificity
- Precision
- F-Score

Based on Receiver Operating Characteristics (ROC)

• Area under the ROC curve (AUC)

Scores

Based on Confusion Matrix

- Accuracy/Classification error \longrightarrow Classification
- Recall
- Specificity
- Precision
- F-Score

Based on Receiver Operating Characteristics (ROC)

• Area under the ROC curve (AUC)

Scores

Based on Confusion Matrix

- Accuracy/Classification error → Classification
- Recall
- Specificity —> Information Retrieval
- Precision
- F-Score

Based on Receiver Operating Characteristics (ROC)

Area under the ROC curve (AUC)

Scores

Based on Confusion Matrix

- Accuracy/Classification error → Classification
- Recall
- Specificity —> Information Retrieval
- Precision
- F-Score

Based on Receiver Operating Characteristics (ROC)

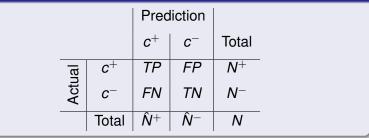
• Area under the ROC curve (AUC) \longrightarrow Medical Domains

Classifier performance evaluation and comparison

Scores

Confusion Matrix

Two-Class Problem



Confusion Matrix

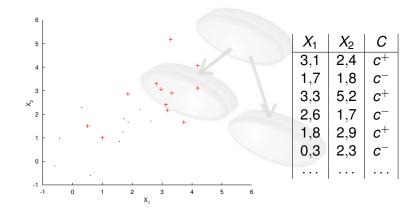
Several-Class Problem

Prediction								
			<i>C</i> ₁	<i>C</i> ₂	<i>C</i> 3		Cn	Total
		<i>C</i> ₁	TP ₁	<i>FN</i> ₁₂	<i>FN</i> ₁₃		FN _{1n}	<i>N</i> ₁
	_	<i>C</i> ₂	<i>FN</i> ₂₁	TP_2	<i>FN</i> ₂₃		FN _{2n}	N ₂
	Actual	<i>C</i> 3	<i>FN</i> ₃₁	FN ₃₂	TP_3		FN _{3n}	N ₃
	ł							
		Cn	FN _{n1}	FN _{n2}	FN _{n3}		TPn	Nn
		Total	Ñ ₁	Ñ2	Ñ ₃		Ν̂ _n	N

Classifier performance evaluation and comparison

Scores

Two-Class Problem - Example

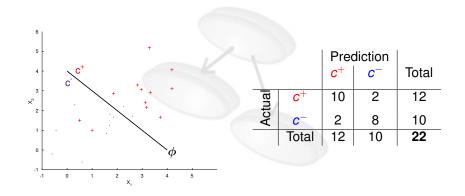


- 24 -

Classifier performance evaluation and comparison

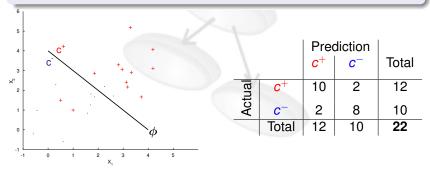
Scores

Two-Class Problem - Example



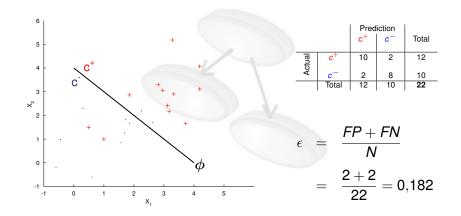
Accuracy/Classification Error

Definition

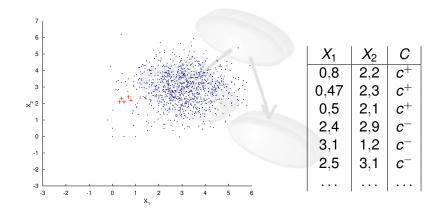


 $\epsilon(\phi) = \rho(\phi(\boldsymbol{X}) \neq \boldsymbol{C}) = \boldsymbol{E}_{\rho(\boldsymbol{X},\boldsymbol{c})}[1 - \delta(\boldsymbol{c},\phi(\boldsymbol{X}))]$

Accuracy/Classification Error

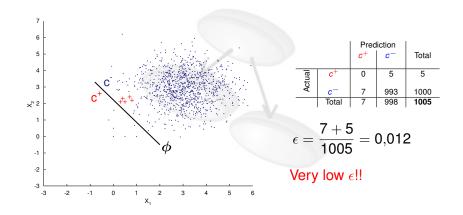


Skew Data



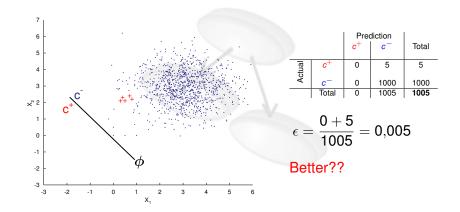
- 28 -

Skew Data - Classification Error



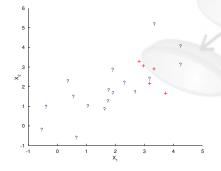
< <p>> > < <p>< <p><p

Skew Data - Classification Error



A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Positive Unlabeled Learning



Positive Labeled Data

- Only positive samples labeled
- Many unlabeled samples:
 - Positive?
 - Negative?
- Classification error is useless

Recall

Definition• Fraction of positive class samples
correctly classified• Other names $\begin{cases} True positive rate
SensitivityTPTPTPTP$

 $\rho(C, \boldsymbol{X})$

TN

$$r(\phi) = \frac{TP}{TP + FN} = \frac{TP}{P}$$

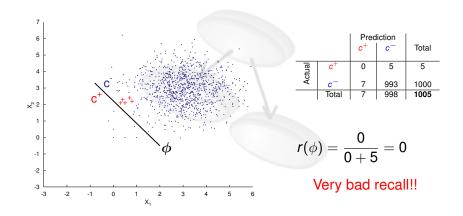
Definition Based on Probabilities

$$r(\phi) = p(\phi(\mathbf{x}) = \mathbf{c}^+ | \mathbf{C} = \mathbf{c}^+) = E_{\rho(\mathbf{x}|\mathbf{C}=\mathbf{c}^+)}[\delta(\phi(\mathbf{x}), \mathbf{c}^+)]$$

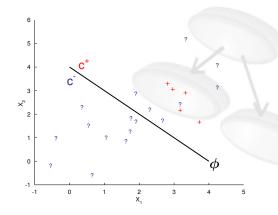
Classifier performance evaluation and comparison

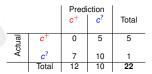
Scores

Skew Data - Recall



Positive Unlabeled Learning - Recall



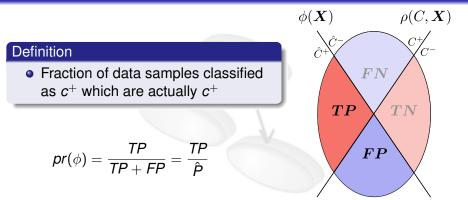


 $r(\phi)=\frac{5}{0+5}=1$

A B > A B >

It is possible to calculate recall in positive-unlabeled problems

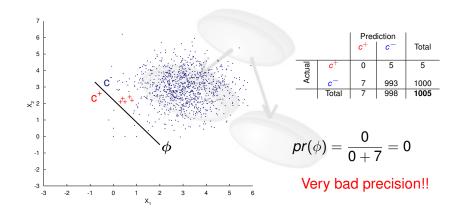
Precision



Definition Based on Probabilities

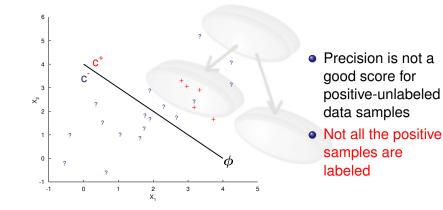
$$pr(\phi) = p(C = c^+ | \phi(\mathbf{x}) = c^+) = E_{\rho(\mathbf{x}|\phi(\mathbf{x}) = c^+)}[\delta(\phi(\mathbf{x}), c^+)]$$

Skew Data - Precision



< <p>> > < <p>< <p><p

Positive Unlabeled Learning - Precision



Precision & Recall Application Domains

Spam Filtering

- Decide if an email is spam or not
 - Precision: Proportion of real spam in the spam-box
 - Recall: Proportion of total spam messages identified by the system

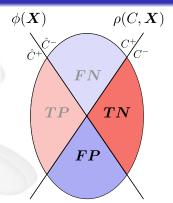
Sentiment Analysis

- Classify opinions about specific products given by users in blogs, webs, forums, etc.
 - Precision: Proportion of opinions classified as positive being actually positive
 - Recall: Proportion of positive opinions identified as positive

Specificity

Definition

- Fraction of negative class samples correctly identified
- Specificity = 1 FalsePositiveRate



$$sp(\phi) = rac{TN}{TN + FP} = rac{TN}{N}$$

Definition Based on Probabilities

$$sp(\phi) = p(\phi(\mathbf{x}) = c^{-}|C = c^{-}) = E_{\rho(\mathbf{x}|C = c^{-})}[1 - \delta(\phi(\mathbf{x}), c^{-})]$$

Skew Data - Specificity

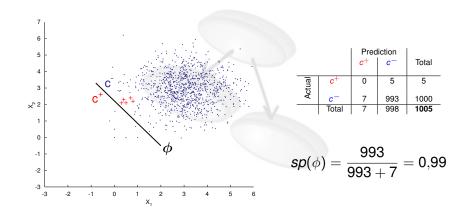


Image: A image: A

Skew Data - Specificity

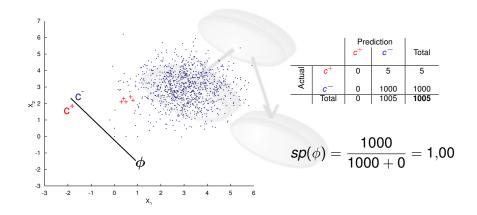


Image: A image: A

Balanced Scores

Balanced accuracy rate

Bal.
$$acc = \frac{1}{2} \left(\frac{TP}{P} + \frac{TN}{N} \right) = \frac{recall + specificity}{2}$$

Balanced error rate

$$Bal. \ \epsilon = \frac{1}{2} \left(\frac{FP}{P} + \frac{FN}{N} \right)$$

Skew Data

		Pred c ⁺	liction c ⁻	Total
Actual	<i>c</i> +	0	5	5
Act	c-	7	993	1000
	Total	7	998	1005

• Bal.
$$acc = \frac{1}{2} \left(\frac{0}{5} + \frac{993}{1000} \right) \approx 0.5$$

• Bal. $\epsilon = \frac{1}{2} \left(\frac{7}{7} + \frac{5}{1000} \right) \approx 0.5$

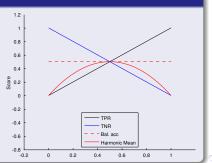
Balanced Scores

•
$$F - Score = \frac{(\beta^2 + 1) Precision Recall}{\beta^2 (Precision + Recall)}$$

•
$$F_1 - Score = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall} \longrightarrow Harmonic Mean$$

Harmonic Mean

- Maximized with balanced components
- Bal. acc → arithmetic mean



Classification Cost

• All misclassifications cannot be equally considered

E.g. Medical Diagnosis Problem

Does not have the same cost as diagnosing a healthy patient as ill rather than diagnosing an ill patient as healthy

Classification Model

May be of interest to minimize the expected cost instead the classification error

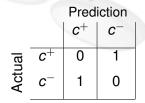
Dealing with Classification Cost

Loss Function

Associate an economic/utility/etc. cost to each classification.

- Typical loss function in classification \rightarrow 0/1 Loss
- We can use cost matrix to specify the associated cost:

- 45 -



Dealing with Classification Cost

Loss Function

Associate an economic/utility/etc. cost to each classification.

- Typical loss function in classification \rightarrow 0/1 Loss
- We can use cost matrix to specify the associated cost:

Prediction
$$c^+$$
 $c^ c^+$ $Cost_{TP}$ $Cost_{FN}$ $c^ Cost_{FP}$ $Cost_{TN}$

Dealing with Classification Cost

Loss Function

Associate an economic/utility/etc. cost to each classification.

- Typical loss function in classification \rightarrow 0/1 Loss
- We can use cost matrix to specify the associated cost:

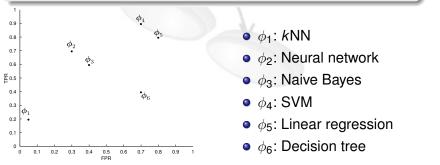
$$\begin{array}{c|c} & & \\ \hline c^{+} & c^{-} \\ \hline c^{+} & Cost_{TP} & Cost_{FN} \\ \hline c^{-} & Cost_{FP} & Cost_{TN} \\ \end{array}$$

Usually not easy to give an associated cost

Receiver Operating Characteristics (ROC)

ROC Space

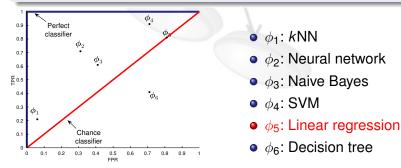
Coordinate system used for visualizing classifiers performance where *TPR* is plotted on the *Y* axis and *FPR* is plotted on the *X* axis.



Receiver Operating Characteristics (ROC)

ROC Space

Coordinate system used for visualizing classifiers performance where *TPR* is plotted on the *Y* axis and *FPR* is plotted on the *X* axis.



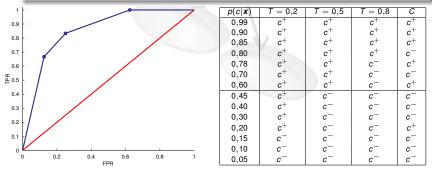
- 49 -

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Receiver Operating Characteristics (ROC)

ROC Curve

For a probabilistic/fuzzy classifier, a ROC curve is a plot of the TPR *vs.* FPR as its discrimination threshold is varied



Receiver Operating Characteristics (ROC)

ROC Curve

For a crisp classifier a ROC curve can be obtained by interpolation from a single point

	p(c x)	<i>T</i> = 0,2	<i>T</i> = 0,5	<i>T</i> = 0,8	С
0.9	0,99	c+	c+	c+	c+
	0,90	c+	c+	c+	c ⁺
0.8	0,85	c+	c+	c+	c+
0.7	0,80	c ⁺	c+	c+	c
0.6	0,78	c ⁺	c ⁺	c_	c+
	0,70	c ⁺	c ⁺	c_	c
僅 0.5 -	0,60	c ⁺	c+	c_	c ⁺
0.4	0,45	c ⁺	c-	c-	c
0.3	0,40	c+	c-	c-	c-
	0,30	c+	c-	c-	c-
0.2	0,20	c ⁺	c-	c-	c ⁺
0.1	0,15	c	c-	c_	c
o k	0,10	c	c-	c_	c
0 0.2 0.4 0.6 0.8 1 FPR	0,05	c	c_	c_	c-

◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ● ● ●

Receiver Operating Characteristics (ROC)

ROC Curve

- Insensitive to skew class distribution
- Insensitive to misclassification cost

Dominance Relationship

A ROC curve *A* dominates another ROC curve *B* if *A* is always above and to the left of *B* in the plot

・ ロ と ・ 四 と ・ 回 と ・ 日 と

Receiver Operating Characteristics (ROC)

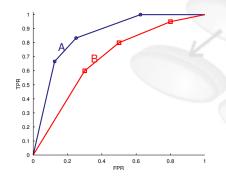
ROC Curve

- Insensitive to skew class distribution
- Insensitive to misclassification cost

Dominance Relationship

A ROC curve A dominates another ROC curve B if A is always above and to the left of B in the plot

Receiver Operating Characteristics (ROC)

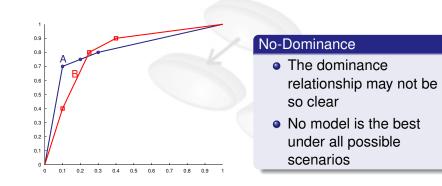


Dominance

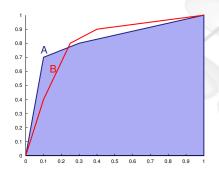
- A dominates B throughout all the range of T
- A has a better predictive performance over any condition of cost and class distribution

• • • • • • • • • • • • •

Receiver Operating Characteristics (ROC)



Receiver Operating Characteristics (ROC)



Area Under ROC Curve

- Equivalent to Wilcoxon test
- If A dominates B:
 AUC(A) ≥ AUC(B)
- If A does not dominate B AUC "cannot identify the best classifier"

Generalization to Multilabel-Class

- Most of the presented scores are for binary classification
- Generalization to multilabel is possible
 - E.g. One-vs-All approach

			Prediction				
		c ₁	<i>c</i> ₂	<i>c</i> ₃		Cn	Total
	C ₁	TP ₁	FN ₁₂	FN ₁₃		FN _{1n}	<i>P</i> ₁
	<i>c</i> ₂	FN ₂₁	TP ₂	FN ₂₃		FN _{2n}	P ₂
Actual	<i>c</i> 3	FN ₃₁	FN ₃₂	TP ₃		FN _{3n}	P ₃
Ac							
	Сп	FN _{n1}	FN _{n2}	FN _{n3}		TPn	Pn
	Total	Ŷ ₁	Ŷ2	Ŷ ₃		Ρ _n	

c_1 vs. All (score ₁)	
• TP	
• TN	
• FN	
• FP	J

Generalization to Multilabel-Class

- Most of the presented scores are for binary classification
- Generalization to multilabel is possible
 - E.g. One-vs-All approach

			Prediction				
		c ₁	<i>c</i> ₂	<i>c</i> ₃		Cn	Total
	C ₁	TP ₁	FN ₁₂	FN ₁₃		FN _{1n}	<i>P</i> ₁
	<i>c</i> ₂	FN ₂₁	TP ₂	FN ₂₃		FN _{2n}	P ₂
Actual	<i>c</i> 3	FN ₃₁	FN ₃₂	TP ₃		FN _{3n}	P ₃
Ac							
	Сп	FN _{n1}	FN _{n2}	FN _{n3}		TPn	Pn
	Total	Ŷ ₁	Ŷ2	Ŷ ₃		Ŷ _n	

$c_1 v_3$	s. All (score ₁)
۰	TP
۰	TN
٠	FN
•	FP

Generalization to Multilabel-Class

- Most of the presented scores are for binary classification
- Generalization to multilabel is possible
 - E.g. One-vs-All approach

			Prediction				1.
		c ₁	<i>c</i> ₂	<i>c</i> ₃		Cn	Total
	C ₁	TP ₁	FN ₁₂	FN ₁₃		FN _{1n}	<i>P</i> ₁
	<i>c</i> ₂	FN ₂₁	TP ₂	FN ₂₃		FN _{2n}	P ₂
Actual	<i>c</i> 3	FN ₃₁	FN ₃₂	TP ₃		FN _{3n}	P ₃
Ac							
	Сп	FN _{n1}	FN _{n2}	FN _{n3}		TPn	Pn
	Total	Ŷ ₁	Ŷ2	Ŷ ₃		Ρ _n	

0	c ₁ vs. All (score ₁)
	• TP
	• TN
	• FN
	• FP

• • • • • • • • • • • •

Generalization to Multilabel-Class

- Most of the presented scores are for binary classification
- Generalization to multilabel is possible
 - E.g. One-vs-All approach

			Prediction				
		c ₁	<i>c</i> ₂	<i>c</i> ₃		Cn	Total
	c ₁	TP ₁	FN ₁₂	FN ₁₃		FN _{1n}	<i>P</i> ₁
	<i>c</i> ₂	FN ₂₁	TP ₂	FN ₂₃		FN _{2n}	P ₂
Actual	<i>c</i> 3	FN ₃₁	FN ₃₂	TP ₃		FN _{3n}	P ₃
Ac							
	Сn	FN _{n1}	FN _{n2}	FN _{n3}		TPn	Pn
	Total	Ŷ ₁	Ŷ2	Ŷ ₃		Ρ _n	

$c_1 v_3$	c_1 vs. All (score ₁)					
۰	TP					
۰	TN					
۹	FN					
•	FP					

Generalization to Multilabel-Class

- Most of the presented scores are for binary classification
- Generalization to multilabel is possible
 - E.g. One-vs-All approach

			Prediction				
		c ₁	<i>c</i> ₂	<i>c</i> ₃		Cn	Total
	C ₁	TP ₁	FN ₁₂	FN ₁₃		FN _{1n}	<i>P</i> ₁
	<i>c</i> ₂	FN ₂₁	TP ₂	FN ₂₃		FN _{2n}	P ₂
Actual	<i>c</i> 3	FN ₃₁	FN ₃₂	TP ₃		FN _{3n}	P ₃
Ac							
	Сп	FN _{n1}	FN _{n2}	FN _{n3}		TPn	Pn
	Total	Ŷ ₁	Ŷ2	Ŷ ₃		Ρ _n	

$c_1 v_3$	s. All (score ₁)
۰	TP
۰	TN
۹	FN
•	FP

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Generalization to Multilabel-Class

- Most of the presented scores are for binary classification
- Generalization to multilabel is possible
 - E.g. One-vs-All approach

		Prediction					
		c ₁	C2	<i>c</i> 3		Cn	Total
Actual	<i>c</i> 1	TP ₁	FN ₁₂	FN ₁₃		FN _{1n}	<i>P</i> ₁
	<i>c</i> ₂	FN ₂₁	TP ₂	FN ₂₃		FN _{2n}	P ₂
	<i>c</i> 3	FN ₃₁	FN ₃₂	TP ₃		FN _{3n}	P ₃
	с _п	FN _{n1}	FN _{n2}	FN _{n3}		TPn	Pn
	Total	Ŷ ₁	Ŷ2	Ŷ3		Ρ _n	

c ₁ vs. All (score ₁)					
• TP					
• TN					
• FN					
• FP					

$$score_{TOT} = \sum_{i=1}^{n} score_i \cdot p(c_i)$$

Scores

The Use of a Specific Score Depends on:

- Application domain
- Characteristics of the problem
- Characteristics of the data set
- Our interest when solving the problem
- etc.

・ロット (母) ・ ヨ) ・ コ)

Classifier performance evaluation and comparison

Estimation Methods

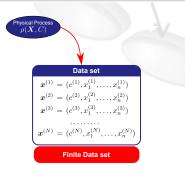
Outline of the Tutorial

ヘロマ ヘロマ ヘビマ・

⇒ ⇒

Estimation

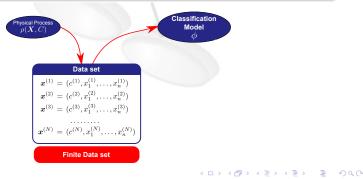
- Select a score to measure the quality
- Calculate the true value of the score
- Limited information is available



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

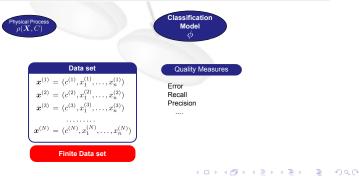
Estimation

- Select a score to measure the quality
- Calculate the true value of the score
- Limited information is available



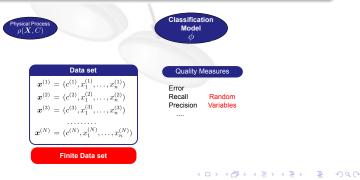
Estimation

- Select a score to measure the quality
- Calculate the true value of the score
- Limited information is available



Estimation

- Select a score to measure the quality
- Calculate the true value of the score
- Limited information is available



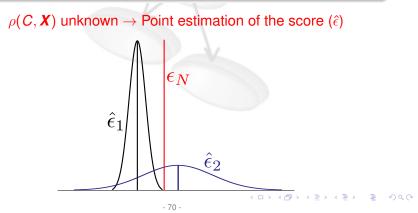
True Value - ϵ_N

Expected value of the score for a set of *N* data samples sampled from $\rho(C, \mathbf{X})$

・ロト ・回 ト ・ 回 ト ・ 回 ト

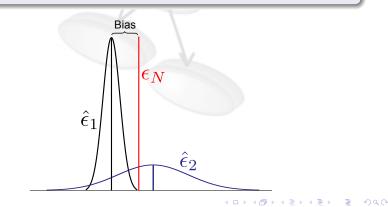
True Value - ϵ_N

Expected value of the score for a set of *N* data samples sampled from $\rho(C, \mathbf{X})$



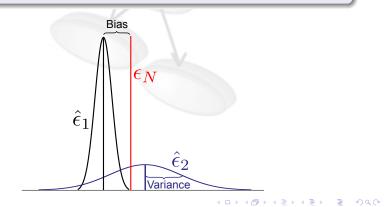
Bias

Difference between the estimation of the score and its true value: $E_{\rho}(\hat{\epsilon} - \epsilon_N)$



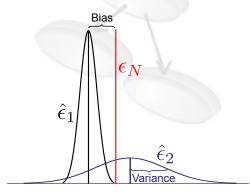
Variance

Deviation of the estimated value from its expected value: $var(\hat{\epsilon} - \epsilon_N)$



Introduction

- Bias and variance depend on the estimation method
- Trade-off between bias and variance needed



Introduction

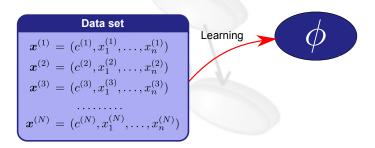
Data set

$$x^{(1)} = (c^{(1)}, x_1^{(1)}, \dots, x_n^{(1)})$$

 $x^{(2)} = (c^{(2)}, x_1^{(2)}, \dots, x_n^{(2)})$
 $x^{(3)} = (c^{(3)}, x_1^{(3)}, \dots, x_n^{(3)})$
 \dots
 $x^{(N)} = (c^{(N)}, x_1^{(N)}, \dots, x_n^{(N)})$

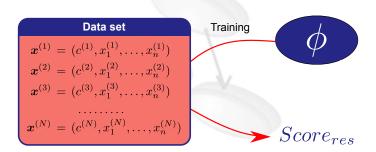
- Finite data set to estimate the score
- Several choices depending on how this data set is dealt with

Resubstitution



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Resubstitution



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

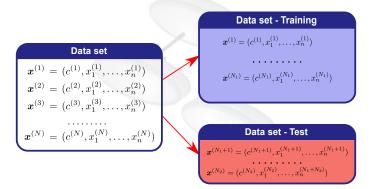
Resubstitution

Classification Error Estimation

- The simplest estimation method
- Biased estimation ϵ_N
- Smaller variance
- Too optimistic (overfitting problem)
- Bad estimator of the true classification error

Estimation Methods

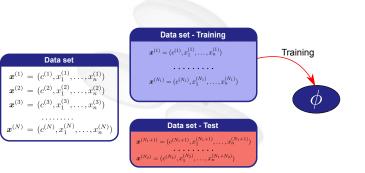
Hold-Out



◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Estimation Methods

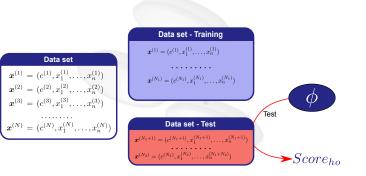
Hold-Out



くして (四)・(日)・(日)・(日)

Estimation Methods

Hold-Out



くして (四)・(日)・(日)・(日)

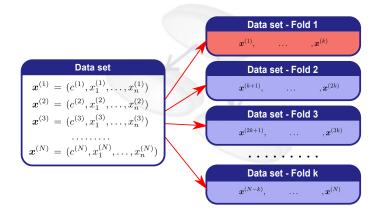
Estimation Methods

Hold-Out

Classification Error Estimation

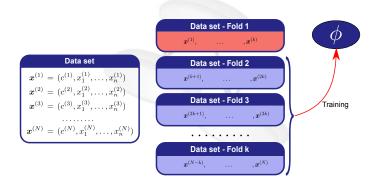
- Large bias (pessimistic estimation of the true classification error)
- Bias related to N₁ and N₂

k-Fold Cross-Validation



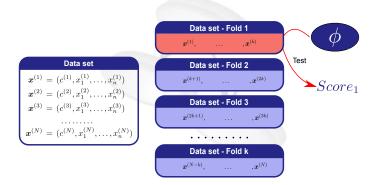
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

k-Fold Cross-Validation



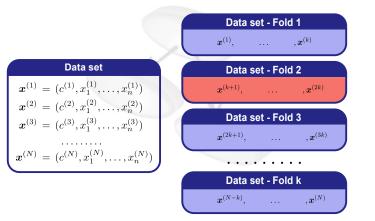
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

k-Fold Cross-Validation



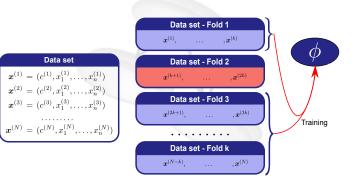
Estimation Methods

k-Fold Cross-Validation



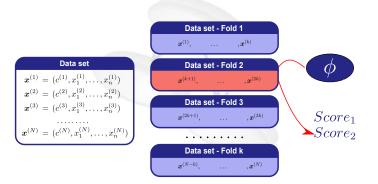
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

k-Fold Cross-Validation

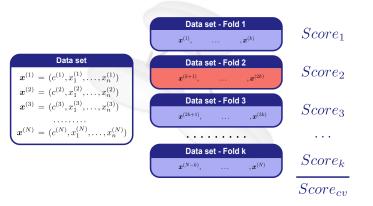


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

k-Fold Cross-Validation



k-Fold Cross-Validation



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

k-Fold Cross-Validation

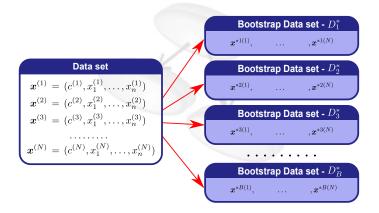
Classification Error Estimation

- Unbiased estimator of $\epsilon_{N-\frac{N}{k}}$
- Smaller bias than Hold-Out

Leaving-One-Out

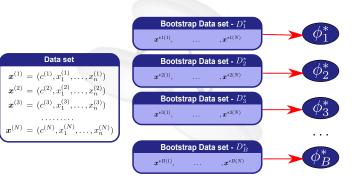
- Special case of *k*-fold Cross-Validation (k = N)
- Quasi unbiased estimation for N
- Improves the bias with respect to CV
- Increases the variance \rightarrow more unstable
- Higher computational cost

Bootstrap



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

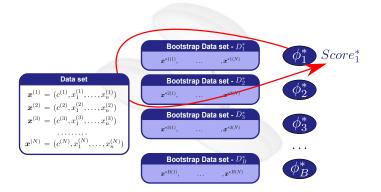
Bootstrap



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

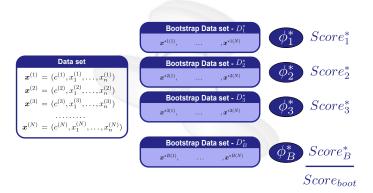
Estimation Methods

Bootstrap



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Bootstrap



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

Bootstrap

Classification Error Estimation

- Biased estimation of the classification error
- Variance improved because of resampling
- Uses for testing part of the data used for learning
- "Similar to resubstitution"
- Problem of overfitting

Leaving-One-Out Bootstrap

- Mimics Cross-Validation
- Each ϕ_i is tested on D/D_i^*

Tries to Avoid the Overfitting Problem

- Expected number of distinct samples on bootstrap data set $\approx 0.632N$
- Similar to repeated Hold-Out
- Biased upwards:
 - Tends to be a pessimistic estimation of the score

Improving the Estimation - Bias

Bias correction terms can be used for error estimation

Hold-Out/Cross-Validation

- Several proposals
- Improves bias estimation
- Surprisingly not very extended

Bootstrap

- Improves bias estimation
- Well established methods

Improving the Estimation - Bias

Corrected Hold-Out $(\hat{\epsilon}_{ho}^+)$ - (Burman, 1989)

$$\hat{\epsilon}_{ho}^{+} = \hat{\epsilon}_{ho} + \hat{\epsilon}_{res} - \hat{\epsilon}_{ho-N}$$

Where

- $\hat{\epsilon}_{ho} = \text{standard Hold-Out estimator}$
- $\hat{\epsilon}_{res} = resubstitution error$
- $\hat{\epsilon}_{ho-N} = \phi$ learned on Hold-Out learning set but tested on *D*.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ - □ - つへで

Improving the Estimation - Bias

Corrected Hold-Out $(\hat{\epsilon}_{ho}^+)$ - (*Burman, 1989*)

$$\hat{\epsilon}_{ho}^{+} = \hat{\epsilon}_{ho} + \hat{\epsilon}_{res} - \hat{\epsilon}_{ho-N}$$

Improvement

•
$$Bias_{\hat{\epsilon}_{ho}} \approx Cons_0 \frac{N_2}{N_1 \cdot N_2}$$

•
$$Bias_{\hat{\epsilon}^+_{ho}} \approx Cons_1 \frac{N_2}{N_1 \cdot N^2}$$

Improving the Estimation - Bias

Corrected Cross-Validation ($\hat{\epsilon}_{CV}^+$) - (*Burman, 1989*)

$$\hat{\epsilon}_{cv}^{+} = \hat{\epsilon}_{cv} + \hat{\epsilon}_{res} - \hat{\epsilon}_{cv-N}$$

Improvement

•
$$Bias_{\hat{\epsilon}_{cv}} \approx Cons_0 \frac{1}{(k-1) \cdot N}$$

•
$$Bias_{\hat{\epsilon}_{cv}^+} \approx Cons_1 \frac{1}{(k-1) \cdot N^2}$$

Improving the Estimation - Bias

0.632 Bootstrap ($\hat{\epsilon}_{boot}^{.632}$)

$$\hat{\epsilon}_{boot}^{.632}=0.368\hat{\epsilon}_{res}+0.632\hat{\epsilon}_{loo-boot}$$

Improvement

- Tries to balance optimism (resubstitution) and pessimism (loo-bootstrap)
- Works well with "light-fitting" classifiers
- With overfitting classifiers $\hat{\epsilon}_{boot}^{.632}$ is still too optimistic

Improving the Estimation - Bias

0.632+ Bootstrap ($\hat{\epsilon}_{boot}^{.632+}$) - (Efron & Tibshirani, 1997)

- Correct bias when there is great amount of overfitting
- Based on the non-information error rate (γ):

$$\hat{\gamma} = \sum_{i=1}^{N} \sum_{j=1}^{N} \delta(\boldsymbol{c}_i, \phi_{\boldsymbol{x}}(\boldsymbol{x}_j)) / N^2$$

Uses the relative overfitting to correct the bias:

$$\hat{R} = rac{\hat{\epsilon}_{\textit{loo}-\textit{boot}} - \hat{\epsilon}_{\textit{res}}}{\hat{\gamma} - \hat{\epsilon}_{\textit{res}}}$$

・ロット 小田 マ イロット

Improving the Estimation - Bias

0.632+ Bootstrap ($\hat{\epsilon}_{boot}^{.632+}$) - (Efron & Tibshirani, 1997)

$$\hat{\epsilon}_{boot}^{.632} = (1-\hat{w})\hat{\epsilon}_{res} + \hat{w}\hat{\epsilon}_{loo-boot}$$

•
$$\hat{W} = \frac{0.632}{1-0.638\hat{R}}$$

•
$$\hat{\gamma} = \sum_{i=1}^{N} \sum_{j=1}^{N} \delta(\mathbf{c}_i, \phi_{\mathbf{x}}(\mathbf{x}_j) / N^2)$$

•
$$\hat{R} = \frac{\hat{\epsilon}_{loo-boot} - \hat{\epsilon}_{res}}{\hat{\gamma} - \hat{\epsilon}_{res}}$$

Improving the Estimation - Variance

Stratification

Keeps the proportion of each class in the train/test data

- Hold-Out: Stratified splitting
- Cross-Validation: Stratified splitting
- Bootstrap: Stratified sampling

May improve the variance of the estimation

Improving the Estimation - Variance

Repeated Methods

- Applicable to Hold-Out and Cross-Validation
- Bootstrap already includes sampling

Repeated Hold-Out/Cross-Validation

- Repeat estimation process t-times
- Simple average over results

Classification Error Estimation

- Same bias as standard estimation methods
- Reduces the variance with respect Hold-Out/Cross-Validation

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

• Which estimation method is better?

May Depend on Many Aspects

- The size of the data set
- The classification paradigm used
- The stability of the learning algorithm
- The characteristics of the classification problem
- The bias/variance/computational cost trade-off
- . . .

・ロット (雪) (き) (き)

Estimation Methods

• Which estimation method is better?

Large Data Sets

- Hold-out may be a good choice
 - Computationally not so expensive
 - Larger bias but depends on the data set size

Smaller Data Sets

- Repeated Cross-Validation
- Bootstrap 0.632

Estimation Methods

• Which estimation method is better?

Small Data Sets

- Bootstrap and repeated Cross-Validation may not be informative
- Permutation test (Ojala & Garriga, 2010):
 - Can be used to ensure the validity of the estimation
- Confidence intervals (Isaksson et al., 2008):
 - May provide more reliable information about the estimation

Hypothesis Testing

Outline of the Tutorial

・ロ・・ (日・・ (日・)

Motivation

Basic Concepts

- Hypothesis testing form the basis of scientific reasoning in experimental sciences
- They are used to set scientific statements
- A hypothesis *H_o* called null hypothesis is tested against another hypothesis *H*₁ called alternative
- The two hypotheses are not at the same level: reject H_o does not mean acceptance of H₁
- The objective is to know when the differences in *H*₀ are due to randomness or not

Classifier performance evaluation and comparison

Hypothesis Testing

Hypothesis Testing

Possible Outcomes of a Test

- Given a sample, a decision is taken about the null hypothesis (*H*₀)
- The decision is taken under uncertainty

	H ₀ TRUE	H ₀ FALSE	
Decision: ACCEPT	\checkmark	Type II error (^β)	
Decision: REJECT	Type I error (α)	\checkmark	

ヘロア 人間 アメヨアメヨア

Hypothesis Testing: An Example

A Simple Hypothesis Test

- A natural process is given in nature that follows a Gaussian distribution $\mathcal{N}(\mu, \sigma^2)$
- We have a sample of this process {x₁,..., x_n} and a decision must be taken about the following hypotheses:

$$\begin{cases} H_0: \mu = 60\\ H_1: \mu = 50 \end{cases}$$

• A statistic (function) of the sample is used to take the decision. In our example $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$

<ロ> <同> <同> < 同> < 回> < □> <

Hypothesis Testing: An Example

Accept and Reject Regions

• The possible values of the statistic are divided in accept and reject regions

$$A.R. = \{(x_1, \dots, x_n) | \overline{X} > 55\}$$
$$R.R. = \{(x_1, \dots, x_n) | \overline{X} \le 55\}$$

Assuming a probability distribution on the statistic X (it depends on the distribution of {x₁,..., x_n}) the probability of each error type can be calculated:

$$\alpha = P_{H_0}(\overline{X} \in R.R.) = P_{H_0}(\overline{X} \le 55)$$
$$\beta = P_{H_1}(\overline{X} \in A.R.) = P_{H_1}(\overline{X} > 55)$$

Hypothesis Testing: An Example

Accept and Reject Regions

 The A.R. and R.R. can be modified in order to have a particular value of α:

$$0,1 = \alpha = P_{H_0}(\overline{X} \in R.R.) = P_{H_0}(\overline{X} \le 51)$$
$$0,05 = \alpha = P_{H_0}(\overline{X} \in R.R.) = P_{H_0}(\overline{X} \le 50,3)$$

p-value. Given a sample and the specific value of the test statistic x for the sample:

$$p$$
-value = $P_{H_0}(\overline{X} \leq \overline{\mathbf{x}})$

Hypothesis Testing: Remarks

Power: $(1 - \beta)$

 Depending on the hypotheses the type II error (β) can not be calculated:

$$\begin{cases} H_0: \mu = 60\\ H_1: \mu \neq 60 \end{cases}$$

- In this case we do not know the value of μ for H₁ so we can not calculate the power (1 – β)
- A good hypothesis test: given an α the test maximises the power (1 – β)

Parametric test vs non-parametric test

Hypothesis Testing in Supervised Classification

Scenarios

- Two classifiers (algorithms) vs More than two
- One dataset vs More than one dataset
- Score
- Score estimation method known vs unknown
- The classifiers are trained and tested in the same datasets

.....

Testing Two Algorithms in a Dataset

The General Approach

- H_0 : classifier ψ has the same score value as classifier ψ' in $p(\mathbf{x}, c)$
- H_1 : they have different values

(ロ) (個) (E) (E) (E)

Testing Two Algorithms in a Dataset

The General Approach

- H_0 : classifier ψ has the same score value as classifier ψ' in $p(\mathbf{x}, c)$
- H_1 : they have different values

 H_0 : algorithm ψ has the same average score value as algorithm ψ' in $p(\mathbf{x}, c)$

 H_1 : they have different values

Testing Two Algorithms in a Dataset

An Ideal Context: We Can Sample $p(\mathbf{x}, c)$

- Sample i.i.d. 2n datasets from $p(\mathbf{x}, c)$
- 2 Learn 2*n* classifiers ψ_i^1 , ψ_i^2 for i = 1, ..., n
- So For each classifier obtain enough i.i.d. samples $\{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_N, c_N)\}$ from $p(\mathbf{x}, c)$
- For each data set calculate the error of each algorithm in the test set

$$\epsilon_i^1 = \frac{1}{N} \sum_{j=1}^{N} error_i^1(\mathbf{x}_j) \qquad \epsilon_i^2 = \frac{1}{N} \sum_{j=1}^{N} error_i^2(\mathbf{x}_j)$$

Solution Calculate the average values over the *n* training datasets:

$$\overline{\epsilon}^1 = \frac{1}{n} \sum_{i=1}^n \epsilon_i^1 \qquad \overline{\epsilon}^2 = \frac{1}{n} \sum_{i=1}^n \epsilon_i^2$$

Testing Two Algorithms in a Dataset

An Ideal Context: We Can Sample $p(\mathbf{x}, c)$

- Our test rejects the null hypothesis if |ē¹ − ē²| (the statistic) is big
- Fortunately, by the central limit theorem:

$$ar{\epsilon}^i \rightsquigarrow \mathcal{N}(\textit{score}(\psi^i), s_i) \quad i = 1, 2$$

• Therefore, under the null hypothesis:

$$\hat{Z} = \frac{\overline{\epsilon}^1 - \overline{\epsilon}^2}{\sqrt{\frac{s_1^2 + s_2^2}{n}}} \rightsquigarrow \mathcal{N}(0, 1)$$

• ... and finally we reject H_0 when $|\hat{Z}| > z_{1-\alpha/2}$

Testing Two Algorithms in a Dataset

Properties of Our Ideal Framework

- Training datasets are independent
- Testing datasets are independent

The Sad Reality

- We can not get i.i.d. training samples from $p(\mathbf{x}, c)$
- We can not get i.i.d. testing samples from $p(\mathbf{x}, c)$
- We have only one sample from $p(\mathbf{x}, c)$

Testing Two Algorithms in a Dataset

McNemar Test (non-parametric)

- Compare two classifiers in a dataset after a Hold-Out process
- It is a paired non-parametric test

	$\psi^{\rm 2}~{\rm error}$	$\psi^{\rm 2}~{\rm ok}$
ψ^1 error	<i>n</i> 00	<i>n</i> ₀₁
ψ^1 ok	<i>n</i> ₁₀	<i>n</i> ₁₁

• Under H_0 we have $n_{10} \approx n_{01}$ and the statistic

$$\frac{(|n_{01} - n_{10}| - 1)^2}{n_{01} + n_{10}}$$

follows a χ^2 distribution with 1 degree of freedom

• When $n_{01} + n_{10}$ is small (<25), the binomial dist. can be used

Testing Two Algorithms in a Dataset

Tests Based on Resampling: Resampled t-test (parametric)

- The dataset is randomly divided *n* times in training and test
- Let p̂_i be the difference between the performance of both algorithms in run *i* and p̄ the average. When it is assumed that p̂_i are Gaussian and independent, under the null

$$t = \frac{\overline{p}\sqrt{n}}{\sqrt{\frac{\sum_{i=1}^{n}(\hat{p}_i - \overline{p})^2}{n-1}}}$$

follows a *t* student distribution with n - 1 degree of freedom

- Caution:
 - \hat{p}_i are not Gaussian as \hat{p}_i^1 and \hat{p}_i^2 are not independent
 - *p̂_i* are not independent (overlap in training and testing)

Testing Two Algorithms in a Dataset

Resampled t-test Improved (Nadeau & Bengio, 2003)

- The variance in this case is too optimistic
- Two alternatives
 - Corrected resampled t:

$$\left(\frac{1}{n}+\frac{n_2}{n_1}\right)\sigma^2$$

• Conservative *Z* (overestimation of the variance)

Testing Two Algorithms in a Dataset

t-test for k-fold Cross-validation

- It is similar to t-test for resampling
- In this case the testing datasets are independent
- The training datasets are still dependent

Testing Two Algorithms in a Dataset

5x2 fold Cross-Validation (Dietterich 1998, Alpaydin 1999)

- Each Cross-Validation process has independent training and testing datasets
- The following statistic:

$$rac{\sum_{i=1}^5 \sum_{j=1}^2 (p_i^{(j)})^2}{2\sum_{i=1}^5 s_i^2}$$

follows a F distribution with 10 and 5 degrees of freedom under the null hypothesis

Testing Two Algorithms in Several Datasets

Initial Approaches

- Averaging Over Datasets
- Paired t-test

Problems

- Commensurability
- Outlier susceptibility
- (t-test) Gaussian assumption

Testing Two Algorithms in Several Datasets

Wilcoxon Signed-Ranks Test

- It is a non-parametric test that works as follows:
 - Rank the module of the performance differences between both algorithms
 - Calculate the sum of the ranks R⁺ and R⁻ where the first (resp. the second) algorithm outperforms the other

3 Calculate
$$T = min(R^+, R^-)$$

• For $N \leq 25$ there are tables with critical values

• For *N* > 25

$$z = \frac{T - \frac{1}{4}N(N+1)}{\sqrt{\frac{1}{24}N(N+1)(2N+1)}} \rightsquigarrow \quad \mathcal{N}(0,1)$$

Wilcoxon Signed-Ranks Test: Example

	ψ^1	ψ^{2}	diff	rank
Dataset1	0.763	0.598		
Dataset2	0.599	0.591		
Dataset3	0.954	0.971		
Dataset4	0.628	0.661		
Dataset5	0.882	0.888		
Dataset6	0.936	0.931		
Dataset7	0.661	0.668		
Dataset8	0.583	0.583		
Dataset9	0.775	0.838		
Dataset10	1.000	1.000		

イロト イヨト イヨト イヨト 三日

Wilcoxon Signed-Ranks Test: Example

	ψ^1	ψ^{2}	diff	rank
Dataset1	0.763	0.598	-0.165	
Dataset2	0.599	0.591		
Dataset3	0.954	0.971		
Dataset4	0.628	0.661		
Dataset5	0.882	0.888		
Dataset6	0.936	0.931		
Dataset7	0.661	0.668		
Dataset8	0.583	0.583		
Dataset9	0.775	0.838		
Dataset10	1.000	1.000		

ヘロア 人間 アメヨアメヨア

Wilcoxon Signed-Ranks Test: Example

	ψ^1	ψ^{2}	diff	rank
Dataset1	0.763	0.598	-0.165	
Dataset2	0.599	0.591	-0.008	
Dataset3	0.954	0.971		
Dataset4	0.628	0.661		
Dataset5	0.882	0.888		
Dataset6	0.936	0.931		
Dataset7	0.661	0.668		
Dataset8	0.583	0.583		
Dataset9	0.775	0.838		
Dataset10	1.000	1.000		

・ロト ・ 四ト ・ ヨト ・ ヨト

	ψ^1	ψ^2	diff	rank
Dataset1	0.763	0.598	-0.165	
Dataset2	0.599	0.591	-0.008	
Dataset3	0.954	0.971	+0.017	
Dataset4	0.628	0.661	+0.033	
Dataset5	0.882	0.888	+0.006	
Dataset6	0.936	0.931	-0.005	
Dataset7	0.661	0.668	+0.007	
Dataset8	0.583	0.583	0.000	
Dataset9	0.775	0.838	+0.063	
Dataset10	1.000	1.000	0.000	

	ψ^1	ψ^2	diff	rank
Dataset1	0.763	0.598	-0.165	
Dataset2	0.599	0.591	-0.008	
Dataset3	0.954	0.971	+0.017	
Dataset4	0.628	0.661	+0.033	
Dataset5	0.882	0.888	+0.006	
Dataset6	0.936	0.931	-0.005	
Dataset7	0.661	0.668	+0.007	
Dataset8	0.583	0.583	0.000	
Dataset9	0.775	0.838	+0.063	
Dataset10	1.000	1.000	0.000	

	ψ^1	ψ^2	diff	rank
Dataset1	0.763	0.598	-0.165	
Dataset2	0.599	0.591	-0.008	
Dataset3	0.954	0.971	+0.017	
Dataset4	0.628	0.661	+0.033	
Dataset5	0.882	0.888	+0.006	
Dataset6	0.936	0.931	-0.005	
Dataset7	0.661	0.668	+0.007	
Dataset8	0.583	0.583	0.000	1.5
Dataset9	0.775	0.838	+0.063	
Dataset10	1.000	1.000	0.000	1.5

	ψ^1	ψ^2	diff	rank
Dataset1	0.763	0.598	-0.165	
Dataset2	0.599	0.591	-0.008	
Dataset3	0.954	0.971	+0.017	
Dataset4	0.628	0.661	+0.033	
Dataset5	0.882	0.888	+0.006	
Dataset6	0.936	0.931	-0.005	
Dataset7	0.661	0.668	+0.007	
Dataset8	0.583	0.583	0.000	1.5
Dataset9	0.775	0.838	+0.063	
Dataset10	1.000	1.000	0.000	1.5

	ψ^1	ψ^{2}	diff	rank
Dataset1	0.763	0.598	-0.165	
Dataset2	0.599	0.591	-0.008	
Dataset3	0.954	0.971	+0.017	
Dataset4	0.628	0.661	+0.033	
Dataset5	0.882	0.888	+0.006	
Dataset6	0.936	0.931	-0.005	3
Dataset7	0.661	0.668	+0.007	
Dataset8	0.583	0.583	0.000	1.5
Dataset9	0.775	0.838	+0.063	
Dataset10	1.000	1.000	0.000	1.5

	ψ^{1}	ψ^{2}	diff	rank
Dataset1	0.763	0.598	-0.165	10
Dataset2	0.599	0.591	-0.008	6
Dataset3	0.954	0.971	+0.017	7
Dataset4	0.628	0.661	+0.033	8
Dataset5	0.882	0.888	+0.006	4
Dataset6	0.936	0.931	-0.005	3
Dataset7	0.661	0.668	+0.007	5
Dataset8	0.583	0.583	0.000	1.5
Dataset9	0.775	0.838	+0.063	9
Dataset10	1.000	1.000	0.000	1.5

	ψ^{1}	ψ^{2}	diff	rank
Dataset1	0.763	0.598	-0.165	10
Dataset2	0.599	0.591	-0.008	6
Dataset3	0.954	0.971	+0.017	7
Dataset4	0.628	0.661	+0.033	8
Dataset5	0.882	0.888	+0.006	4
Dataset6	0.936	0.931	-0.005	3
Dataset7	0.661	0.668	+0.007	5
Dataset8	0.583	0.583	0.000	1.5
Dataset9	0.775	0.838	+0.063	9
Dataset10	1.000	1.000	0.000	1.5

$$R^{+} =$$

Wilcoxon Signed-Ranks Test: Example

	ψ^1	ψ^{2}	diff	rank
Dataset1	0.763	0.598	-0.165	10
Dataset2	0.599	0.591	-0.008	6
Dataset3	0.954	0.971	+0.017	7
Dataset4	0.628	0.661	+0.033	8
Dataset5	0.882	0.888	+0.006	4
Dataset6	0.936	0.931	-0.005	3
Dataset7	0.661	0.668	+0.007	5
Dataset8	0.583	0.583	0.000	1.5
Dataset9	0.775	0.838	+0.063	9
Dataset10	1.000	1.000	0.000	1.5

 $R^+ = 7 + 8 + 4 + 5 + 9 + 1/2(1,5+1,5)$

・ロット 小田 マ イロット

æ

Wilcoxon Signed-Ranks Test: Example

	ψ^1	ψ^2	diff	rank
Dataset1	0.763	0.598	-0.165	10
Dataset2	0.599	0.591	-0.008	6
Dataset3	0.954	0.971	+0.017	7
Dataset4	0.628	0.661	+0.033	8
Dataset5	0.882	0.888	+0.006	4
Dataset6	0.936	0.931	-0.005	3
Dataset7	0.661	0.668	+0.007	5
Dataset8	0.583	0.583	0.000	1.5
Dataset9	0.775	0.838	+0.063	9
Dataset10	1.000	1.000	0.000	1.5

$$R^{+} = 34.5$$

- 139 -

Wilcoxon Signed-Ranks Test: Example

	ψ^1	ψ^{2}	diff	rank
Dataset1	0.763	0.598	-0.165	10
Dataset2	0.599	0.591	-0.008	6
Dataset3	0.954	0.971	+0.017	7
Dataset4	0.628	0.661	+0.033	8
Dataset5	0.882	0.888	+0.006	4
Dataset6	0.936	0.931	-0.005	3
Dataset7	0.661	0.668	+0.007	5
Dataset8	0.583	0.583	0.000	1.5
Dataset9	0.775	0.838	+0.063	9
Dataset10	1.000	1.000	0.000	1.5

 $R^+ = 34.5$ $R^- = 10 + 6 + 3 + 1/2(1,5+1,5)$

ヘロン 人間 とくほど 人間 と

э

	ψ^1	ψ^2	diff	rank
Dataset1	0.763	0.598	-0.165	10
Dataset2	0.599	0.591	-0.008	6
Dataset3	0.954	0.971	+0.017	7
Dataset4	0.628	0.661	+0.033	8
Dataset5	0.882	0.888	+0.006	4
Dataset6	0.936	0.931	-0.005	3
Dataset7	0.661	0.668	+0.007	5
Dataset8	0.583	0.583	0.000	1.5
Dataset9	0.775	0.838	+0.063	9
Dataset10	1.000	1.000	0.000	1.5

$$R^+ = 34.5$$
 $R^- = 20.5$

	ψ^1	ψ^{2}	diff	rank
Dataset1	0.763	0.598	-0.165	10
Dataset2	0.599	0.591	-0.008	6
Dataset3	0.954	0.971	+0.017	7
Dataset4	0.628	0.661	+0.033	8
Dataset5	0.882	0.888	+0.006	4
Dataset6	0.936	0.931	-0.005	3
Dataset7	0.661	0.668	+0.007	5
Dataset8	0.583	0.583	0.000	1.5
Dataset9	0.775	0.838	+0.063	9
Dataset10	1.000	1.000	0.000	1.5
<i>R</i> ⁺ = 34.5	<i>R</i> ⁻ = 2	0.5	T = min(I)	₽+, <i>R</i> −

Wilcoxon Signed-Ranks Test: Example

	ψ^1	ψ^{2}	diff	rank
Dataset1	0.763	0.598	-0.165	10
Dataset2	0.599	0.591	-0.008	6
Dataset3	0.954	0.971	+0.017	7
Dataset4	0.628	0.661	+0.033	8
Dataset5	0.882	0.888	+0.006	4
Dataset6	0.936	0.931	-0.005	3
Dataset7	0.661	0.668	+0.007	5
Dataset8	0.583	0.583	0.000	1.5
Dataset9	0.775	0.838	+0.063	9
Dataset10	1.000	1.000	0.000	1.5

 $R^+ = 34.5$ $R^- = 20.5$ $T = min(R^+, R^-) = 20.5$

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Testing Two Algorithms in Several Datasets

Wilcoxon Signed-Ranks Test

- It also suffers from commensurability but only qualitatively
- When the assumptions of the *t* test are met, Wilcoxon is less powerful than *t* test

・ロ・・ (日・・ 日・・ 日・

Testing Two Algorithms in Several Datasets

Signed Test

- It is a non-parametric test that counts the number of losses, ties and wins
- Under the null the number of wins follows a binomial distribution B(1/2, N)
- For large values of *N* the number of wins follows $\mathcal{N}(N/2, \sqrt{N/2})$ under the null
- This test does not make any assumptions
- It is weaker than Wilcoxon

イロト イヨト イヨト イヨト 三日

Testing Several Algorithms in Several Datasets

Dataset (Demšar, 2006)

			ψ^{3}	
D_1	0.84 0.57 0.62 0.95	0.79	0.89	0.43
D_2	0.57	0.78	0.78	0.93
D_3	0.62	0.87	0.88	0.71
D_4	0.95	0.55	0.49	0.72
D_5	0.84 0.51	0.67	0.89	0.89
D_6	0.51	0.63	0.98	0.55

Testing Several Algorithms in Several Datasets

Multiple Hypothesis Testing

Testing all possible pairs of hypotheses μ_{ψi} = μ_{ψj} ∀ i, j.
 Multiple hypothesis testing

• Testing the hypothesis
$$\mu_{\psi^1} = \mu_{\psi^2} = \ldots = \mu_{\psi^k}$$

Testing Several Algorithms in Several Datasets

Multiple Hypothesis Testing

Testing all possible pairs of hypotheses μ_{ψi} = μ_{ψj} ∀ i, j.
 Multiple hypothesis testing

• Testing the hypothesis $\mu_{\psi^1} = \mu_{\psi^2} = \ldots = \mu_{\psi^k}$

Testing Several Algorithms in Several Datasets

Multiple Hypothesis Testing

- Testing all possible pairs of hypotheses μ_{ψi} = μ_{ψi} ∀ i, j.
 Multiple hypothesis testing
- Testing the hypothesis $\mu_{\psi^1} = \mu_{\psi^2} = \ldots = \mu_{\psi^k}$

ANOVA vs Friedman

- Repeated measures ANOVA: Assumes Gaussianity and sphericity
- Friedman: Non-parametric test

Testing Several Algorithms in Several Datasets

Freidman Test

- Rank the algorithms for each dataset separately (1-best). In case of ties assigned average ranks
- 2 Calculate the average rank R_j of each algorithm ψ^j
- The following statistic:

$$\chi_F^2 = \frac{12N}{k(k+1)} \left[\sum_j R_j^2 - \frac{k(k+1)^2}{4} \right]$$

follows a χ^2 with k - 1 degrees of freedom (N>10, k>5)

A D > A D > A D > A D >

Testing Several Algorithms in Several Datasets

Friedman Test: Example ψ² ψ^3 ψ^1 ψ^4 0.84 (2) 0.79 (3) 0.89(1) 0.43(4) D_1 D_2 0.57 (4) 0.78 (2.5) 0.78 (2.5) 0.93(1) D_3 0.62 (4) 0.87 (2) 0.88 (1) 0.71(3) D_4 0.95 (1) 0.55 (3) 0.49 (4) 0.72(2) D_5 0.84 (3) 0.67 (4) 0.89 (1.5) 0.89(1.5) D_6 0.51 (4) 0.63 (2) 0.98 (1) 0.55(3)3 2.75 1.83 2.41avr. rank

Testing Several Algorithms in Several Datasets

Friedman Test	: Example			
	ψ^{1}	ψ^2	ψ^{3}	ψ^{4}
<i>D</i> ₁	0.84 (2)	0.79 (3)	0.89 (1)	0.43 (4)
<i>D</i> ₂	0.57 (4)	0.78 (2.5)	0.78 (2.5)	0.93 (1)
D_3	0.62 (4)	0.87 (2)	0.88 (1)	0.71 (3)
D_4	0.95 (1)	0.55 (3)	0.49 (4)	0.72 (2)
D_5	0.84 (3)	0.67 (4)	0.89 (1.5)	0.89 (1.5)
D_6	0.51 (4)	0.63 (2)	0.98 (1)	0.55 (3)
avr. rank	3	2.75	1.83	2.41
χ _F	$h = \frac{12N}{k(k+1)}$	$\overline{1}$ $\left[\sum_{j} R_{j}^{2} - \right]$	$-\frac{k(k+1)^2}{4}$	=

Testing Several Algorithms in Several Datasets

Friedman Test	t: Example	!		
	ψ^{1}	ψ^2	ψ^{3}	ψ^4
<i>D</i> ₁	0.84 (2)	0.79 (3)	0.89 (1)	0.43 (4)
D_2	0.57 (4)	0.78 (2.5)	0.78 (2.5)	0.93 (1)
D_3	0.62 (4)	0.87 (2)	0.88 (1)	0.71 (3)
D_4	0.95 (1)	0.55 (3)	0.49 (4)	0.72 (2)
D_5	0.84 (3)	0.67 (4)	0.89 (1.5)	0.89 (1.5)
D_6	0.51 (4)	0.63 (2)	0.98 (1)	0.55 (3)
avr. rank	3	2.75	1.83	2.41
$\chi^2_F =$	$\frac{12N}{k(k+1)}$	$\sum_{j} R_j^2 - \frac{k(j)}{k}$	$\frac{(k+1)^2}{4} =$	2,5902

Testing Several Algorithms in Several Datasets

Iman & Davenport, 1980

• An improvement of Friedman test:

$$F_F = rac{(N-1)\chi_F^2}{N(k-1)-\chi_F^2}$$

follows a F-distribution with k - 1 and (k - 1)(N - 1) degrees of freedom

Testing Several Algorithms in Several Datasets

5

Post-hoc Tests

- Decision on the null hypothesis
- In case of rejection use of post-hoc tests to:
 - Compare all pairs
 - 2 Compare all classifiers with a control

Classifier performance evaluation and comparison

Hypothesis Testing

Testing Several Algorithms in Several Datasets

Multiple Hypothesis Testing

• Several related hypothesis simultaneously H_1, \ldots, H_n

	H ₀ TRUE	H ₀ FALSE	
Decision: ACCEPT	\checkmark	Type II error (β)	
Decision: REJECT	Type I error (α)	\checkmark	

<ロ> <同> <同> < 同> < 同> < 三> < 三> 三三

Classifier performance evaluation and comparison

Hypothesis Testing

Testing Several Algorithms in Several Datasets

Multiple Hypothesis Testing

• Several related hypothesis simultaneously H_1, \ldots, H_n

	H ₀ TRUE	H ₀ FALSE	
Decision: ACCEPT	\checkmark	Type II error (β)	
Decision: REJECT	Type I error (α)	\checkmark	

Testing Several Algorithms in Several Datasets

Multiple Hypothesis Testing

• Several related hypothesis simultaneously H_1, \ldots, H_n

	H ₀ TRUE	H ₀ FALSE
Decision: ACCEPT	\checkmark	Type II error (β)
Decision: REJECT	Type I error (α)	\checkmark

• Family-wise error: Probability of rejecting at least one hypothesis assuming that ALL ARE TRUE

Testing Several Algorithms in Several Datasets

Multiple Hypothesis Testing

• Several related hypothesis simultaneously H_1, \ldots, H_n

	H ₀ TRUE	H ₀ FALSE
Decision: ACCEPT	\checkmark	Type II error (β)
Decision: REJECT	Type I error (α)	\checkmark

- Family-wise error: Probability of rejecting at least one hypothesis assuming that ALL ARE TRUE
- False discovery rate

・ロット (母) ・ ヨ) ・ ヨ)

Testing Several Algorithms in Several Datasets

Multiple Hypothesis Testing

• Several related hypothesis simultaneously H_1, \ldots, H_n

	H ₀ TRUE	H ₀ FALSE
Decision: ACCEPT	\checkmark	Type II error (β)
Decision: REJECT	Type I error (α)	\checkmark

- Family-wise error: Probability of rejecting at least one hypothesis assuming that ALL ARE TRUE
- False discovery rate

A D > A D > A D > A D >

Testing Several Algorithms in Several Datasets

Designing Multiple Hypothesis Test

- Controlling family-wise error
- If each test H_i has a type I error α then the family-wise error (FWE) in n tests is:

 $P(\text{accept } H_1 \cap \text{accept } H_2 \cap \ldots \cap \text{accept } H_n)$

- $= P(\operatorname{accept} H_1) \times P(\operatorname{accept} H_2) \times \ldots \times P(\operatorname{accept} H_n)$
- $= (1 \alpha)^n$

and therefore

$$\mathsf{FWE} = \mathbf{1} - (\mathbf{1} - \alpha)^n \approx \mathbf{1} - (\mathbf{1} - \alpha n) = \alpha n$$

• In order to have FWE α we need to modify the threshold at each test

Testing Several Algorithms in Several Datasets

Comparing with a Control

• The statistic for comparing ψ^{i} and ψ^{j} is:

$$z = rac{(R_i - R_j)}{\sqrt{rac{k(k+1)}{6N}}} \rightsquigarrow \quad \mathcal{N}(0, 1)$$

Bonferroni-Dunn Test

- It is a one-step method
- Modify α by taking into account the number of comparisons:

$$\frac{\alpha}{k-1}$$

・ロト ・回ト ・ヨト

- 162 -

Testing Several Algorithms in Several Datasets

Comparing with a Control

- Methods based on ordered p-values
- The p-values are ordered $p_1 \leq p_2 \leq \ldots \leq p_{k-1}$

Holm Method

- It is a step-down procedure
- Starting from p_1 check the first i = 1, ..., k 1 such that $p_i > \alpha/(k i)$
- The hypothesis *H*₁,..., *H*_{*i*-1} are rejected. The rest of hypotheses are kept

Testing Several Algorithms in Several Datasets

Friedman Tes	t: Example	lpha= 0.05)		
	ψ^1	ψ^2	ψ^{3}	ψ^{4}
<i>D</i> ₁	0.84 (2)	0.79 (3)	0.89 (1)	0.43 (4)
D_2	0.57 (4)	0.78 (2.5)	0.78 (2.5)	0.93 (1)
D_3	0.62 (4)	0.87 (2)	0.88 (1)	0.71 (3)
D_4	0.95 (1)	0.55 (3)	0.49 (4)	0.72 (2)
D_5	0.84 (3)	0.67 (4)	0.89 (1.5)	0.89 (1.5)
D_6	0.51 (4)	0.63 (2)	0.98 (1)	0.55 (3)
avr. rank	3	2.75	1.83	2.41

Testing Several Algorithms in Several Datasets

Friedman Test	t: Example	$(\alpha = 0.05)$		
	ψ^1	ψ^2	ψ^{3}	ψ^{4}
<i>D</i> ₁	0.84 (2)	0.79 (3)	0.89 (1)	0.43 (4)
D_2	0.57 (4)	0.78 (2.5)	0.78 (2.5)	0.93 (1)
D_3	0.62 (4)	0.87 (2)	0.88 (1)	0.71 (3)
D_4	0.95 (1)	0.55 (3)	0.49 (4)	0.72 (2)
D_5	0.84 (3)	0.67 (4)	0.89 (1.5)	0.89 (1.5)
D_6	0.51 (4)	0.63 (2)	0.98 (1)	0.55 (3)
avr. rank	3	2.75	1.83	2.41
		$z = \frac{(R_i - F_i)}{\sqrt{\frac{k(k+1)}{6N}}}$	(\underline{R}_j)	

Testing Several Algorithms in Several Datasets

Friedman Test: Example ($lpha=$	= 0.05)
<i>z</i> =	$\frac{(R_i - R_j)}{\sqrt{\frac{k(k+1)}{6N}}}$
	Z
Z ₁₂	0.3354
Z ₁₃	1.5697
Z ₁₄	0.7915
Z ₂₃	1.2343
Z ₂₄	0.4561
Z ₃₄	-0.7781

イロト イヨト イヨト イヨト 三日

Testing Several Algorithms in Several Datasets

Friedman Test: Example ($\alpha = 0.05$)

	Z	<i>p</i> -value
Z ₁₂	0.3354	0.259
Z ₁₃	2.1569	0.031
Z ₁₄	0.7915	0.125
Z ₂₃	1.9843	0.042
Z ₂₄	0.4561	0.221
Z ₃₄	-2.7781	0.009

Testing Several Algorithms in Several Datasets

Friedman Test: Example ($\alpha = 0.05$)

	Ζ	<i>p</i> -value	Bonferroni (α /6)
Z ₁₂	0.3354	0.259	0.008
Z ₁₃	2.1569	0.031	0.008
<i>Z</i> ₁₄	0.7915	0.125	0.008
Z ₂₃	1.9843	0.042	0.008
<i>Z</i> 24	0.4561	0.221	0.008
Z ₃₄	-2.7781	0.007	0.008

Testing Several Algorithms in Several Datasets

Friedman Test: Example ($\alpha = 0.05$)

	z	<i>p</i> -value	Bonferroni (α /6)
Z ₁₂	0.3354	0.259	0.008
Z ₁₃	2.1569	0.031	0.008
<i>Z</i> ₁₄	0.7915	0.125	0.008
Z ₂₃	1.9843	0.042	0.008
Z ₂₄	0.4561	0.221	0.008
Z ₃₄	-2.7781	0.007	0.008

Testing Several Algorithms in Several Datasets

Fried	Friedman Test: Example ($\alpha = 0.05$)						
	z	<i>p</i> -value	Bonferroni (α /6)	Holm ($\alpha/(7-i)$)			
Z ₁₂	0.3354	0.259	0.008				
Z ₁₃	2.1569	0.031	0.008				
<i>Z</i> ₁₄	0.7915	0.125	0.008				
Z ₂₃	1.9843	0.009	0.008				
Z ₂₄	0.4561	0.221	0.008				
Z ₃₄	-2.7781	0.007	0.008				

Testing Several Algorithms in Several Datasets

Friedman Test: Example ($lpha=$ 0.05)					
z	<i>p</i> -value	Bonferroni (α /6)	Holm $(\alpha/(7-i))$		
0.3354	0.259	0.008			
2.1569	0.031	0.008			
0.7915	0.125	0.008			
1.9843	0.009	0.008			
0.4561	0.221	0.008			
-2.7781	0.007	0.008	0.008		
	<i>z</i> 0.3354 2.1569 0.7915 1.9843 0.4561	zp-value0.33540.2592.15690.0310.79150.1251.98430.0090.45610.221	zp-valueBonferroni (α/6)0.33540.2590.0082.15690.0310.0080.79150.1250.0081.98430.0090.0080.45610.2210.008		

Testing Several Algorithms in Several Datasets

Friedman Test: Example ($\alpha = 0.05$)					
Z	<i>p</i> -value	Bonferroni (α /6)	Holm $(\alpha/(7-i))$		
0.3354	0.259	0.008			
2.1569	0.031	0.008			
0.7915	0.125	0.008			
1.9843	0.009	0.008	0.010		
0.4561	0.221	0.008			
-2.7781	0.007	0.008	0.008		
	<i>z</i> 0.3354 2.1569 0.7915 1.9843 0.4561	zp-value0.33540.2592.15690.0310.79150.1251.98430.0090.45610.221	zp-valueBonferroni (α/6)0.33540.2590.0082.15690.0310.0080.79150.1250.0081.98430.0090.0080.45610.2210.008		

Testing Several Algorithms in Several Datasets

Friedman Test: Example ($\alpha = 0.05$)					
z	<i>p</i> -value	Bonferroni (α /6)	Holm $(\alpha/(7-i))$		
0.3354	0.259	0.008			
2.1569	0.031	0.008	0.012		
0.7915	0.125	0.008			
1.9843	0.009	0.008	0.010		
0.4561	0.221	0.008			
-2.7781	0.007	0.008	0.008		
	<i>z</i> 0.3354 2.1569 0.7915 1.9843 0.4561	zp-value0.33540.2592.15690.0310.79150.1251.98430.0090.45610.221	zp-valueBonferroni (α/6)0.33540.2590.0082.15690.0310.0080.79150.1250.0081.98430.0090.0080.45610.2210.008		

Testing Several Algorithms in Several Datasets

1
$\alpha/(7-i))$
.012
.010
.008

Testing Several Algorithms in Several Datasets

Hochberg Method

- It is a step-up procedure
- Starting with p_{k-1} check the first i = k 1, ..., 1 such that $p_i < \alpha/(k-i)$
- The hypothesis H₁,..., H_{i-1} are rejected. The rest of hypotheses are kept

Hommel Method

- Find the largest *j* such that *p_{n-j+k} > kα/j* for all *k* = 1,...,*j*
- Reject all hypotheses *i* such that $p_i \leq \alpha/j$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Testing Several Algorithms in Several Datasets

Comments on the Tests

- Holm, Hochberg and Hommel tests are more powerful than Bonferroni
- Hochberg and Hommel are based on Simes conjecture and can have a higher than α FWE
- In practice Holm obtains very similar results to the other

Testing Several Algorithms in Several Datasets

All Pairwise Comparisons

- Differences with Comparing with a Control
- The all pairwise hypotheses are logically related: not all combinations of true and false hypotheses are possible

 C_1 better than C_2 and C_2 better than C_3

and C_1 equal to C_3

Testing Several Algorithms in Several Datasets

Shaffer Static Procedure

- It is a modification of Homl's procedure
- Starting from p₁ check the first i = 1,..., k(k − 1)/2 such that p_i > α/t_i
- The hypothesis *H*₁,..., *H*_{*i*-1} are rejected. The rest of hypotheses are kept
- *t_i* is the maximum number of hypotheses that can be true given that (*i* − 1) are false
- It is a static procedure: t_i is determined given the hypotheses independently of the *p*-values

Testing Several Algorithms in Several Datasets

Shaffer Dynamic Procedure

- It is similar to the previous procedure but t_i is changed by t^{*}_i
- *t*[∗]_i considers the maximum number of hypotheses that can be true given that the previous (*i* − 1) hypotheses are false
- It is a dynamic procedure as t^{*}_i depends on the hypotheses already rejected
- It is more powerful than the Shaffer Static Procedure

< 日 > < 回 > < 回 > < 回 > < 回 > <

Testing Several Algorithms in Several Datasets

Bregmann & Hommel

- More powerful alternative than Shaffer Dynamic Procedure
- Difficult implementation

Remarks

Adjusted p-values

・ロット (母) ・ ヨ) ・ ヨ)

Conclusions

Two Classifiers in a Dataset

 The complexity of the estimation of the scores makes it difficult to carry out good statistical testing

٩

Two Classifiers in Several Datasets

- Wilcoxon Signed-Ranks Test is a good choice
- In case of many datasets and to avoid the commensurability problem the Signed test could be used

Conclusions

Several Classifiers in Several Datasets

- Friedman or Iman & Davenport are required
- Post-hoc test more powerful than Bonferroni:
 - Comparison with a control: Holm method
 - All-to-all comparison: Shaffer Static method

An Idea for Future Work

 To consider the variability of the score in each classifier and dataset

Classifier performance evaluation and comparison

Jose A. Lozano, Guzmán Santafé, Iñaki Inza

Intelligent Systems Group The University of the Basque Country

International Conference on Machine Learning and Applications (ICMLA 2010) December 12-14, 2010

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <