Practice Problems: Support Vector Machines

1. Consider the following training data set of (seven) points X's in a plane and their binary class label y's:

X	(1, 0)	(0, 1)	(0, -1)	(-1, 0)	(0, 2)	(0, -2)	(-2, 0)
У	-1	-1	-1	+1	+1	+1	+1

We perform the following non-linear transform of the input vector $X = (x_1, x_2)$ to obtain the transformed feature vector $Z = (z_1, z_2) = (\phi_1(X), \phi_2(X))$, with $\phi_1(X) = x_2^2 - 2x_1 + 3$, $\phi_2(X) = x_1^2 - 2x_2 - 3$. Write the equation of the optimal separating hyperplane in transformed space Z. Explain your answer.

2. A hypothetical two class hard margin linear SVM has the following values of Lagrange multipliers α , support vectors, and output class labels *y*:

α	Support vector	у
1	(0, -1, 1)	+1
1	(0, 2, -1)	-1
1	(-1, 0, 2)	-1

Compute the predicted class label y of this SVM when the input feature vector is (0.2, 0.8, 0.4).

3. Consider a set of 2-dimensional training data points (x_1, x_2) belonging to two classes +1 and -1 respectively as shown below. We design a linear hard margin SVM to classify them. The equation of the optimal separating hyperplane is?

+1: (3, 1), (3, -1), (6, 1), (6, -1) -1: (1, 0), (0, 1), (0, -1), (-1, 0).

4. Consider the set of training data: Find the corresponding dual cost function (as a function of α_i 's only)

Feature	label	feature	label
$x_1 = (0,0,0)$	<i>d</i> ₁ = -1	$x_5 = (1,0,0)$	<i>d</i> ₅ = 1
$x_2 = (0,0,1)$	<i>d</i> ₂ = 1	$x_6 = (1,0,1)$	<i>d</i> ₆ = -1
$x_3 = (0, 1, 0)$	<i>d</i> ₃ = 1	$x_7 = (1,1,0)$	<i>d</i> ₇ = -1
$x_4 = (0, 1, 1)$	<i>d</i> ₄ = -1	$x_8 = (1,1,1)$	<i>d</i> ₈ = 1